This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrev2.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| fsumrev2.2 | ⊢ ( 𝑗 = ( ( 𝑀 + 𝑁 ) − 𝑘 ) → 𝐴 = 𝐵 ) | ||
| Assertion | fsumrev2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrev2.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 2 | fsumrev2.2 | ⊢ ( 𝑗 = ( ( 𝑀 + 𝑁 ) − 𝑘 ) → 𝐴 = 𝐵 ) | |
| 3 | sum0 | ⊢ Σ 𝑗 ∈ ∅ 𝐴 = 0 | |
| 4 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 5 | 3 4 | eqtr4i | ⊢ Σ 𝑗 ∈ ∅ 𝐴 = Σ 𝑘 ∈ ∅ 𝐵 |
| 6 | sumeq1 | ⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑗 ∈ ∅ 𝐴 ) | |
| 7 | sumeq1 | ⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 8 | 5 6 7 | 3eqtr4a | ⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑀 ... 𝑁 ) = ∅ ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 10 | fzn0 | ⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 13 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 15 | 12 14 | zaddcld | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 16 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 17 | 15 12 14 16 2 | fsumrev | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) 𝐵 ) |
| 18 | 12 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 19 | 14 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 20 | 18 19 | pncand | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 21 | 18 19 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑀 ) = 𝑁 ) |
| 22 | 20 21 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 23 | 22 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 24 | 17 23 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 25 | 10 24 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑀 ... 𝑁 ) ≠ ∅ ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |
| 26 | 9 25 | pm2.61dane | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐵 ) |