This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem: ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . Theorem 15-2.8 of Gleason p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem . This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 0 → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 + 𝐵 ) ↑ 0 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 0 → ( 0 ... 𝑥 ) = ( 0 ... 0 ) ) | |
| 3 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 C 𝑘 ) = ( 0 C 𝑘 ) ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 − 𝑘 ) = ( 0 − 𝑘 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) = ( 𝐴 ↑ ( 0 − 𝑘 ) ) ) |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑥 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑥 ) ) → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 9 | 2 8 | sumeq12dv | ⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 10 | 1 9 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ↔ ( ( 𝐴 + 𝐵 ) ↑ 0 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 0 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝑛 → ( 0 ... 𝑥 ) = ( 0 ... 𝑛 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 C 𝑘 ) = ( 𝑛 C 𝑘 ) ) | |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 − 𝑘 ) = ( 𝑛 − 𝑘 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) = ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 18 | 14 17 | oveq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑥 = 𝑛 ∧ 𝑘 ∈ ( 0 ... 𝑥 ) ) → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 20 | 13 19 | sumeq12dv | ⊢ ( 𝑥 = 𝑛 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 21 | 12 20 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ↔ ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) | |
| 24 | oveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 0 ... 𝑥 ) = ( 0 ... ( 𝑛 + 1 ) ) ) | |
| 25 | oveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 C 𝑘 ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) | |
| 26 | oveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 − 𝑘 ) = ( ( 𝑛 + 1 ) − 𝑘 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) = ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) ) |
| 28 | 27 | oveq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 29 | 25 28 | oveq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑥 = ( 𝑛 + 1 ) ∧ 𝑘 ∈ ( 0 ... 𝑥 ) ) → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 31 | 24 30 | sumeq12dv | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 32 | 23 31 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ↔ ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) ) | |
| 35 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 0 ... 𝑥 ) = ( 0 ... 𝑁 ) ) | |
| 36 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 C 𝑘 ) = ( 𝑁 C 𝑘 ) ) | |
| 37 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 − 𝑘 ) = ( 𝑁 − 𝑘 ) ) | |
| 38 | 37 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) = ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 40 | 36 39 | oveq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝑥 = 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝑥 ) ) → ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 42 | 35 41 | sumeq12dv | ⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 43 | 34 42 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ↔ ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( 𝑥 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑥 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 45 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 46 | exp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) | |
| 47 | 45 46 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = ( 1 · 1 ) ) |
| 48 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 49 | 47 48 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = 1 ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) = ( 1 · 1 ) ) |
| 51 | 50 48 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) = 1 ) |
| 52 | 0z | ⊢ 0 ∈ ℤ | |
| 53 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 54 | 51 53 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ∈ ℂ ) |
| 55 | oveq2 | ⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) ) | |
| 56 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 57 | bcn0 | ⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) | |
| 58 | 56 57 | ax-mp | ⊢ ( 0 C 0 ) = 1 |
| 59 | 55 58 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = 1 ) |
| 60 | oveq2 | ⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) ) | |
| 61 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 62 | 60 61 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 ) |
| 63 | 62 | oveq2d | ⊢ ( 𝑘 = 0 → ( 𝐴 ↑ ( 0 − 𝑘 ) ) = ( 𝐴 ↑ 0 ) ) |
| 64 | oveq2 | ⊢ ( 𝑘 = 0 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 0 ) ) | |
| 65 | 63 64 | oveq12d | ⊢ ( 𝑘 = 0 → ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) |
| 66 | 59 65 | oveq12d | ⊢ ( 𝑘 = 0 → ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) |
| 67 | 66 | fsum1 | ⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) |
| 68 | 52 54 67 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( 1 · ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) |
| 69 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 70 | 69 | exp0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 0 ) = 1 ) |
| 71 | 51 68 70 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 0 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( 𝐴 ↑ ( 0 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 72 | simprl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) | |
| 73 | simprr | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 74 | simpl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝑛 ∈ ℕ0 ) | |
| 75 | id | ⊢ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) | |
| 76 | 72 73 74 75 | binomlem | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) ∧ ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 77 | 76 | exp31 | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 78 | 77 | a2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑛 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑛 + 1 ) ) ( ( ( 𝑛 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑛 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) ) |
| 79 | 11 22 33 44 71 78 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 80 | 79 | impcom | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 81 | 80 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |