This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsummulc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsummulc2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| fsummulc2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumdivc.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | fsumdivc | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsummulc2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | fsummulc2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fsumdivc.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 5 | 2 4 | reccld | ⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 6 | 1 5 3 | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · ( 1 / 𝐶 ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 7 | 1 3 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 8 | 7 2 4 | divrecd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 · ( 1 / 𝐶 ) ) ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
| 11 | 3 9 10 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 12 | 11 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 13 | 6 8 12 | 3eqtr4d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) ) |