This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An N-times differentiable point is an M-times differentiable point, if M <_ N . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvn2bss | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | simp2 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 3 | elfznn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
| 5 | elfzuz3 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 9 | dvnadd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) | |
| 10 | 1 2 4 8 9 | syl22anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 11 | 4 | nn0cnd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℂ ) |
| 12 | elfzuz2 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 14 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 15 | 13 14 | eleqtrrdi | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 16 | 15 | nn0cnd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 17 | 11 16 | pncan3d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 19 | 10 18 | eqtrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 20 | 19 | dmeqd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 21 | cnex | ⊢ ℂ ∈ V | |
| 22 | 21 | a1i | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ℂ ∈ V ) |
| 23 | dvnf | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) | |
| 24 | 3 23 | syl3an3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) |
| 25 | dvnbss | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) | |
| 26 | 3 25 | syl3an3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) |
| 27 | elpmi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) | |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 29 | 28 | simprd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 30 | 26 29 | sstrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) |
| 31 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 32 | 22 1 24 30 31 | syl22anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 33 | dvnbss | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) | |
| 34 | 1 32 8 33 | syl3anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 35 | 20 34 | eqsstrrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |