This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An N-times differentiable point is an M-times differentiable point, if M <_ N . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvn2bss | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> S e. { RR , CC } ) |
|
| 2 | simp2 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> F e. ( CC ^pm S ) ) |
|
| 3 | elfznn0 | |- ( M e. ( 0 ... N ) -> M e. NN0 ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> M e. NN0 ) |
| 5 | elfzuz3 | |- ( M e. ( 0 ... N ) -> N e. ( ZZ>= ` M ) ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. ( ZZ>= ` M ) ) |
| 7 | uznn0sub | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
|
| 8 | 6 7 | syl | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( N - M ) e. NN0 ) |
| 9 | dvnadd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ ( N - M ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
|
| 10 | 1 2 4 8 9 | syl22anc | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
| 11 | 4 | nn0cnd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> M e. CC ) |
| 12 | elfzuz2 | |- ( M e. ( 0 ... N ) -> N e. ( ZZ>= ` 0 ) ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. ( ZZ>= ` 0 ) ) |
| 14 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 15 | 13 14 | eleqtrrdi | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. NN0 ) |
| 16 | 15 | nn0cnd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. CC ) |
| 17 | 11 16 | pncan3d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( M + ( N - M ) ) = N ) |
| 18 | 17 | fveq2d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` ( M + ( N - M ) ) ) = ( ( S Dn F ) ` N ) ) |
| 19 | 10 18 | eqtrd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` N ) ) |
| 20 | 19 | dmeqd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = dom ( ( S Dn F ) ` N ) ) |
| 21 | cnex | |- CC e. _V |
|
| 22 | 21 | a1i | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> CC e. _V ) |
| 23 | dvnf | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
|
| 24 | 3 23 | syl3an3 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
| 25 | dvnbss | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
|
| 26 | 3 25 | syl3an3 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
| 27 | elpmi | |- ( F e. ( CC ^pm S ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
|
| 28 | 27 | 3ad2ant2 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 29 | 28 | simprd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom F C_ S ) |
| 30 | 26 29 | sstrd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` M ) C_ S ) |
| 31 | elpm2r | |- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC /\ dom ( ( S Dn F ) ` M ) C_ S ) ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
|
| 32 | 22 1 24 30 31 | syl22anc | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 33 | dvnbss | |- ( ( S e. { RR , CC } /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) /\ ( N - M ) e. NN0 ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) C_ dom ( ( S Dn F ) ` M ) ) |
|
| 34 | 1 32 8 33 | syl3anc | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) C_ dom ( ( S Dn F ) ` M ) ) |
| 35 | 20 34 | eqsstrrd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` M ) ) |