This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th derivative of the M -th derivative of F is the same as the M + N -th derivative of F . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnadd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 0 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑛 = 0 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑛 = 0 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) | |
| 7 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 𝑘 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑛 = 𝑘 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) ) | |
| 12 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑀 + 𝑛 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 𝑁 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) ) |
| 21 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 23 | ssidd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ℂ ⊆ ℂ ) | |
| 24 | cnex | ⊢ ℂ ∈ V | |
| 25 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) | |
| 26 | 24 25 | mpan | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 27 | 26 | simplbda | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 28 | 24 | a1i | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ℂ ∈ V ) |
| 29 | simpl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 30 | pmss12g | ⊢ ( ( ( ℂ ⊆ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ∧ ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) | |
| 31 | 23 27 28 29 30 | syl22anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) |
| 33 | dvnff | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) | |
| 34 | 33 | ffvelcdmda | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 35 | 32 34 | sseldd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 36 | dvn0 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) | |
| 37 | 22 35 36 | syl2anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 38 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 40 | 39 | addridd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 42 | 37 41 | eqtr4d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) |
| 43 | oveq2 | ⊢ ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) | |
| 44 | 22 | adantr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 45 | 35 | adantr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 46 | simpr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 47 | dvnp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) ) | |
| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) ) |
| 49 | 39 | adantr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 50 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 51 | 50 | adantl | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 52 | 1cnd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 53 | 49 51 52 | addassd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 54 | 53 | fveq2d | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 55 | simpllr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 56 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) | |
| 57 | 56 | adantll | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
| 58 | dvnp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑀 + 𝑘 ) ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) | |
| 59 | 44 55 57 58 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 60 | 54 59 | eqtr3d | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 61 | 48 60 | eqeq12d | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ↔ ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) ) |
| 62 | 43 61 | imbitrrid | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) |
| 63 | 62 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 64 | 63 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 65 | 5 10 15 20 42 64 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 66 | 65 | com12 | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 67 | 66 | impr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) |