This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvval.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| dvval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dvfval | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvval.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| 2 | dvval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | df-dv | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 5 | 2 | oveq1i | ⊢ ( 𝐾 ↾t 𝑠 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) |
| 6 | simprl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝑠 = 𝑆 ) | |
| 7 | 6 | oveq2d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝐾 ↾t 𝑠 ) = ( 𝐾 ↾t 𝑆 ) ) |
| 8 | 7 1 | eqtr4di | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝐾 ↾t 𝑠 ) = 𝑇 ) |
| 9 | 5 8 | eqtr3id | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) = 𝑇 ) |
| 10 | 9 | fveq2d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) = ( int ‘ 𝑇 ) ) |
| 11 | simprr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) | |
| 12 | 11 | dmeqd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = dom 𝐹 ) |
| 13 | simpl2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 14 | 13 | fdmd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝐹 = 𝐴 ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = 𝐴 ) |
| 16 | 10 15 | fveq12d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) = ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ) |
| 17 | 15 | difeq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( dom 𝑓 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑥 } ) ) |
| 18 | 11 | fveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 19 | 11 | fveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 20 | 18 19 | oveq12d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 22 | 17 21 | mpteq12dv | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 24 | 23 | xpeq2d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) = ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 25 | 16 24 | iuneq12d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 26 | simpr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 27 | 26 | oveq2d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑠 = 𝑆 ) → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
| 28 | simp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) | |
| 29 | cnex | ⊢ ℂ ∈ V | |
| 30 | 29 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
| 31 | 28 30 | sylibr | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ 𝒫 ℂ ) |
| 32 | 29 | a1i | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ℂ ∈ V ) |
| 33 | simp2 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 34 | simp3 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) | |
| 35 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 36 | 32 31 33 34 35 | syl22anc | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 37 | limccl | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ⊆ ℂ | |
| 38 | xpss2 | ⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ⊆ ℂ → ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) ) | |
| 39 | 37 38 | ax-mp | ⊢ ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) |
| 40 | 39 | rgenw | ⊢ ∀ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) |
| 41 | ss2iun | ⊢ ( ∀ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) |
| 43 | iunxpconst | ⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) | |
| 44 | 42 43 | sseqtri | ⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) |
| 45 | 44 | a1i | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) |
| 46 | fvex | ⊢ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∈ V | |
| 47 | 46 29 | xpex | ⊢ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ∈ V |
| 48 | 47 | ssex | ⊢ ( ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∈ V ) |
| 49 | 45 48 | syl | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∈ V ) |
| 50 | 4 25 27 31 36 49 | ovmpodx | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 51 | 50 45 | eqsstrd | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) |
| 52 | 50 51 | jca | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |