This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvval.t | |- T = ( K |`t S ) |
|
| dvval.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | dvfval | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvval.t | |- T = ( K |`t S ) |
|
| 2 | dvval.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | df-dv | |- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
|
| 4 | 3 | a1i | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 5 | 2 | oveq1i | |- ( K |`t s ) = ( ( TopOpen ` CCfld ) |`t s ) |
| 6 | simprl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> s = S ) |
|
| 7 | 6 | oveq2d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( K |`t s ) = ( K |`t S ) ) |
| 8 | 7 1 | eqtr4di | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( K |`t s ) = T ) |
| 9 | 5 8 | eqtr3id | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( TopOpen ` CCfld ) |`t s ) = T ) |
| 10 | 9 | fveq2d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) = ( int ` T ) ) |
| 11 | simprr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> f = F ) |
|
| 12 | 11 | dmeqd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom f = dom F ) |
| 13 | simpl2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> F : A --> CC ) |
|
| 14 | 13 | fdmd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom F = A ) |
| 15 | 12 14 | eqtrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom f = A ) |
| 16 | 10 15 | fveq12d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) = ( ( int ` T ) ` A ) ) |
| 17 | 15 | difeq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( dom f \ { x } ) = ( A \ { x } ) ) |
| 18 | 11 | fveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( f ` z ) = ( F ` z ) ) |
| 19 | 11 | fveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( f ` x ) = ( F ` x ) ) |
| 20 | 18 19 | oveq12d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( f ` z ) - ( f ` x ) ) = ( ( F ` z ) - ( F ` x ) ) ) |
| 21 | 20 | oveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 22 | 17 21 | mpteq12dv | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
| 23 | 22 | oveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 24 | 23 | xpeq2d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) = ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 25 | 16 24 | iuneq12d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 26 | simpr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ s = S ) -> s = S ) |
|
| 27 | 26 | oveq2d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) |
| 28 | simp1 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
|
| 29 | cnex | |- CC e. _V |
|
| 30 | 29 | elpw2 | |- ( S e. ~P CC <-> S C_ CC ) |
| 31 | 28 30 | sylibr | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S e. ~P CC ) |
| 32 | 29 | a1i | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> CC e. _V ) |
| 33 | simp2 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
|
| 34 | simp3 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
|
| 35 | elpm2r | |- ( ( ( CC e. _V /\ S e. ~P CC ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
|
| 36 | 32 31 33 34 35 | syl22anc | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F e. ( CC ^pm S ) ) |
| 37 | limccl | |- ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) C_ CC |
|
| 38 | xpss2 | |- ( ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) C_ CC -> ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) ) |
|
| 39 | 37 38 | ax-mp | |- ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) |
| 40 | 39 | rgenw | |- A. x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) |
| 41 | ss2iun | |- ( A. x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) ) |
|
| 42 | 40 41 | ax-mp | |- U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) |
| 43 | iunxpconst | |- U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) = ( ( ( int ` T ) ` A ) X. CC ) |
|
| 44 | 42 43 | sseqtri | |- U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) |
| 45 | 44 | a1i | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) |
| 46 | fvex | |- ( ( int ` T ) ` A ) e. _V |
|
| 47 | 46 29 | xpex | |- ( ( ( int ` T ) ` A ) X. CC ) e. _V |
| 48 | 47 | ssex | |- ( U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) e. _V ) |
| 49 | 45 48 | syl | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) e. _V ) |
| 50 | 4 25 27 31 36 49 | ovmpodx | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 51 | 50 45 | eqsstrd | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) |
| 52 | 50 51 | jca | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |