This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvdssq . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqlem | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 2 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 3 | dvdssqim | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 5 | sqgcd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
| 7 | nnsqcl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℕ ) | |
| 8 | nnsqcl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) | |
| 9 | gcdeq | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℕ ∧ ( 𝑁 ↑ 2 ) ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 11 | 10 | biimpar | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 12 | 6 11 | eqtrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ) |
| 13 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 14 | 1 2 13 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 15 | 14 | nn0red | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) |
| 16 | 14 | nn0ge0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ ( 𝑀 gcd 𝑁 ) ) |
| 17 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 19 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 20 | 19 | nn0ge0d | ⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑀 ) |
| 22 | sq11 | ⊢ ( ( ( ( 𝑀 gcd 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 gcd 𝑁 ) ) ∧ ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) | |
| 23 | 15 16 18 21 22 | syl22anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) |
| 25 | 12 24 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( 𝑀 gcd 𝑁 ) = 𝑀 ) |
| 26 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 27 | 1 2 26 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 29 | 28 | simprd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 30 | 25 29 | eqbrtrrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → 𝑀 ∥ 𝑁 ) |
| 31 | 30 | ex | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) → 𝑀 ∥ 𝑁 ) ) |
| 32 | 4 31 | impbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |