This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvdssq . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqlem | |- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | dvdssqim | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 5 | sqgcd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
|
| 6 | 5 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
| 7 | nnsqcl | |- ( M e. NN -> ( M ^ 2 ) e. NN ) |
|
| 8 | nnsqcl | |- ( N e. NN -> ( N ^ 2 ) e. NN ) |
|
| 9 | gcdeq | |- ( ( ( M ^ 2 ) e. NN /\ ( N ^ 2 ) e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 11 | 10 | biimpar | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) ) |
| 12 | 6 11 | eqtrd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) ) |
| 13 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 14 | 1 2 13 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN0 ) |
| 15 | 14 | nn0red | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. RR ) |
| 16 | 14 | nn0ge0d | |- ( ( M e. NN /\ N e. NN ) -> 0 <_ ( M gcd N ) ) |
| 17 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 18 | 17 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. RR ) |
| 19 | nnnn0 | |- ( M e. NN -> M e. NN0 ) |
|
| 20 | 19 | nn0ge0d | |- ( M e. NN -> 0 <_ M ) |
| 21 | 20 | adantr | |- ( ( M e. NN /\ N e. NN ) -> 0 <_ M ) |
| 22 | sq11 | |- ( ( ( ( M gcd N ) e. RR /\ 0 <_ ( M gcd N ) ) /\ ( M e. RR /\ 0 <_ M ) ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
|
| 23 | 15 16 18 21 22 | syl22anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
| 24 | 23 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
| 25 | 12 24 | mpbid | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( M gcd N ) = M ) |
| 26 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 27 | 1 2 26 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 28 | 27 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 29 | 28 | simprd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( M gcd N ) || N ) |
| 30 | 25 29 | eqbrtrrd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> M || N ) |
| 31 | 30 | ex | |- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) || ( N ^ 2 ) -> M || N ) ) |
| 32 | 4 31 | impbid | |- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |