This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweqnn | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) | |
| 2 | dvdsprmpweq | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) | |
| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 4 | 3 | imp | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 5 | df-n0 | ⊢ ℕ0 = ( ℕ ∪ { 0 } ) | |
| 6 | 5 | rexeqi | ⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ( ℕ ∪ { 0 } ) 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 7 | rexun | ⊢ ( ∃ 𝑛 ∈ ( ℕ ∪ { 0 } ) 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 9 | 0z | ⊢ 0 ∈ ℤ | |
| 10 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 0 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑛 = 0 → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) ) |
| 12 | 11 | rexsng | ⊢ ( 0 ∈ ℤ → ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) ) |
| 13 | 9 12 | ax-mp | ⊢ ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) |
| 14 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 15 | 14 | nncnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 16 | 15 | exp0d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 18 | 17 | eqeq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 0 ) ↔ 𝐴 = 1 ) ) |
| 19 | eluz2b3 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) | |
| 20 | eqneqall | ⊢ ( 𝐴 = 1 → ( 𝐴 ≠ 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) | |
| 21 | 20 | com12 | ⊢ ( 𝐴 ≠ 1 → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 22 | 19 21 | simplbiim | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 24 | 18 23 | sylbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝐴 = ( 𝑃 ↑ 0 ) → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 26 | 25 | impd | ⊢ ( 𝐴 = ( 𝑃 ↑ 0 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 27 | 13 26 | sylbi | ⊢ ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 28 | 27 | jao1i | ⊢ ( ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 29 | 8 28 | sylbi | ⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 30 | 4 29 | mpcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |