This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweqnn | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
|
| 2 | dvdsprmpweq | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
|
| 3 | 1 2 | syl3an2 | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
| 4 | 3 | imp | |- ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 5 | df-n0 | |- NN0 = ( NN u. { 0 } ) |
|
| 6 | 5 | rexeqi | |- ( E. n e. NN0 A = ( P ^ n ) <-> E. n e. ( NN u. { 0 } ) A = ( P ^ n ) ) |
| 7 | rexun | |- ( E. n e. ( NN u. { 0 } ) A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) |
|
| 8 | 6 7 | bitri | |- ( E. n e. NN0 A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) |
| 9 | 0z | |- 0 e. ZZ |
|
| 10 | oveq2 | |- ( n = 0 -> ( P ^ n ) = ( P ^ 0 ) ) |
|
| 11 | 10 | eqeq2d | |- ( n = 0 -> ( A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) |
| 12 | 11 | rexsng | |- ( 0 e. ZZ -> ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) |
| 13 | 9 12 | ax-mp | |- ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) |
| 14 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 15 | 14 | nncnd | |- ( P e. Prime -> P e. CC ) |
| 16 | 15 | exp0d | |- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
| 17 | 16 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P ^ 0 ) = 1 ) |
| 18 | 17 | eqeq2d | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) <-> A = 1 ) ) |
| 19 | eluz2b3 | |- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ A =/= 1 ) ) |
|
| 20 | eqneqall | |- ( A = 1 -> ( A =/= 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
|
| 21 | 20 | com12 | |- ( A =/= 1 -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
| 22 | 19 21 | simplbiim | |- ( A e. ( ZZ>= ` 2 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
| 23 | 22 | 3ad2ant2 | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
| 24 | 18 23 | sylbid | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
| 25 | 24 | com12 | |- ( A = ( P ^ 0 ) -> ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
| 26 | 25 | impd | |- ( A = ( P ^ 0 ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
| 27 | 13 26 | sylbi | |- ( E. n e. { 0 } A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
| 28 | 27 | jao1i | |- ( ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
| 29 | 8 28 | sylbi | |- ( E. n e. NN0 A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
| 30 | 4 29 | mpcom | |- ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) |
| 31 | 30 | ex | |- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) |