This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds1lem.1 | ⊢ ( 𝜑 → ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) | |
| dvds1lem.2 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | ||
| dvds1lem.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑍 ∈ ℤ ) | ||
| dvds1lem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐽 ) = 𝐾 → ( 𝑍 · 𝑀 ) = 𝑁 ) ) | ||
| Assertion | dvds1lem | ⊢ ( 𝜑 → ( 𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds1lem.1 | ⊢ ( 𝜑 → ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) | |
| 2 | dvds1lem.2 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 3 | dvds1lem.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑍 ∈ ℤ ) | |
| 4 | dvds1lem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐽 ) = 𝐾 → ( 𝑍 · 𝑀 ) = 𝑁 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 · 𝑀 ) = ( 𝑍 · 𝑀 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑧 · 𝑀 ) = 𝑁 ↔ ( 𝑍 · 𝑀 ) = 𝑁 ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝑍 ∈ ℤ ∧ ( 𝑍 · 𝑀 ) = 𝑁 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) |
| 8 | 3 4 7 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐽 ) = 𝐾 → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 9 | 8 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐽 ) = 𝐾 → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 10 | divides | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐽 ∥ 𝐾 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐽 ) = 𝐾 ) ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → ( 𝐽 ∥ 𝐾 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐽 ) = 𝐾 ) ) |
| 12 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 14 | 9 11 13 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁 ) ) |