This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvdsle . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdslelem.1 | ⊢ 𝑀 ∈ ℤ | |
| dvdslelem.2 | ⊢ 𝑁 ∈ ℕ | ||
| dvdslelem.3 | ⊢ 𝐾 ∈ ℤ | ||
| Assertion | dvdslelem | ⊢ ( 𝑁 < 𝑀 → ( 𝐾 · 𝑀 ) ≠ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslelem.1 | ⊢ 𝑀 ∈ ℤ | |
| 2 | dvdslelem.2 | ⊢ 𝑁 ∈ ℕ | |
| 3 | dvdslelem.3 | ⊢ 𝐾 ∈ ℤ | |
| 4 | 3 | zrei | ⊢ 𝐾 ∈ ℝ |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | lelttric | ⊢ ( ( 𝐾 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) |
| 8 | zgt0ge1 | ⊢ ( 𝐾 ∈ ℤ → ( 0 < 𝐾 ↔ 1 ≤ 𝐾 ) ) | |
| 9 | 3 8 | ax-mp | ⊢ ( 0 < 𝐾 ↔ 1 ≤ 𝐾 ) |
| 10 | 9 | orbi2i | ⊢ ( ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) ↔ ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) ) |
| 11 | 7 10 | mpbi | ⊢ ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) |
| 12 | le0neg1 | ⊢ ( 𝐾 ∈ ℝ → ( 𝐾 ≤ 0 ↔ 0 ≤ - 𝐾 ) ) | |
| 13 | 4 12 | ax-mp | ⊢ ( 𝐾 ≤ 0 ↔ 0 ≤ - 𝐾 ) |
| 14 | 2 | nngt0i | ⊢ 0 < 𝑁 |
| 15 | 2 | nnrei | ⊢ 𝑁 ∈ ℝ |
| 16 | 1 | zrei | ⊢ 𝑀 ∈ ℝ |
| 17 | 5 15 16 | lttri | ⊢ ( ( 0 < 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) |
| 18 | 14 17 | mpan | ⊢ ( 𝑁 < 𝑀 → 0 < 𝑀 ) |
| 19 | 5 16 | ltlei | ⊢ ( 0 < 𝑀 → 0 ≤ 𝑀 ) |
| 20 | 18 19 | syl | ⊢ ( 𝑁 < 𝑀 → 0 ≤ 𝑀 ) |
| 21 | 4 | renegcli | ⊢ - 𝐾 ∈ ℝ |
| 22 | 21 16 | mulge0i | ⊢ ( ( 0 ≤ - 𝐾 ∧ 0 ≤ 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
| 23 | 20 22 | sylan2 | ⊢ ( ( 0 ≤ - 𝐾 ∧ 𝑁 < 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
| 24 | 13 23 | sylanb | ⊢ ( ( 𝐾 ≤ 0 ∧ 𝑁 < 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
| 25 | 24 | expcom | ⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → 0 ≤ ( - 𝐾 · 𝑀 ) ) ) |
| 26 | 4 16 | remulcli | ⊢ ( 𝐾 · 𝑀 ) ∈ ℝ |
| 27 | le0neg1 | ⊢ ( ( 𝐾 · 𝑀 ) ∈ ℝ → ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) |
| 29 | 4 | recni | ⊢ 𝐾 ∈ ℂ |
| 30 | 16 | recni | ⊢ 𝑀 ∈ ℂ |
| 31 | 29 30 | mulneg1i | ⊢ ( - 𝐾 · 𝑀 ) = - ( 𝐾 · 𝑀 ) |
| 32 | 31 | breq2i | ⊢ ( 0 ≤ ( - 𝐾 · 𝑀 ) ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) |
| 33 | 28 32 | bitr4i | ⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ ( - 𝐾 · 𝑀 ) ) |
| 34 | 25 33 | imbitrrdi | ⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → ( 𝐾 · 𝑀 ) ≤ 0 ) ) |
| 35 | 26 5 15 | lelttri | ⊢ ( ( ( 𝐾 · 𝑀 ) ≤ 0 ∧ 0 < 𝑁 ) → ( 𝐾 · 𝑀 ) < 𝑁 ) |
| 36 | 14 35 | mpan2 | ⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 → ( 𝐾 · 𝑀 ) < 𝑁 ) |
| 37 | 34 36 | syl6 | ⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → ( 𝐾 · 𝑀 ) < 𝑁 ) ) |
| 38 | lemulge12 | ⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ∧ ( 0 ≤ 𝑀 ∧ 1 ≤ 𝐾 ) ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) | |
| 39 | 16 4 38 | mpanl12 | ⊢ ( ( 0 ≤ 𝑀 ∧ 1 ≤ 𝐾 ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) |
| 40 | 20 39 | sylan | ⊢ ( ( 𝑁 < 𝑀 ∧ 1 ≤ 𝐾 ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) |
| 41 | 40 | ex | ⊢ ( 𝑁 < 𝑀 → ( 1 ≤ 𝐾 → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) ) |
| 42 | 15 16 26 | ltletri | ⊢ ( ( 𝑁 < 𝑀 ∧ 𝑀 ≤ ( 𝐾 · 𝑀 ) ) → 𝑁 < ( 𝐾 · 𝑀 ) ) |
| 43 | 42 | ex | ⊢ ( 𝑁 < 𝑀 → ( 𝑀 ≤ ( 𝐾 · 𝑀 ) → 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
| 44 | 41 43 | syld | ⊢ ( 𝑁 < 𝑀 → ( 1 ≤ 𝐾 → 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
| 45 | 37 44 | orim12d | ⊢ ( 𝑁 < 𝑀 → ( ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) → ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) ) |
| 46 | 11 45 | mpi | ⊢ ( 𝑁 < 𝑀 → ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
| 47 | 26 15 | lttri2i | ⊢ ( ( 𝐾 · 𝑀 ) ≠ 𝑁 ↔ ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
| 48 | 46 47 | sylibr | ⊢ ( 𝑁 < 𝑀 → ( 𝐾 · 𝑀 ) ≠ 𝑁 ) |