This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in ApostolNT p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsleabs | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ ( abs ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsabsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( abs ‘ 𝑁 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( abs ‘ 𝑁 ) ) ) |
| 3 | nnabscl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) | |
| 4 | dvdsle | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( abs ‘ 𝑁 ) ∈ ℕ ) → ( 𝑀 ∥ ( abs ‘ 𝑁 ) → 𝑀 ≤ ( abs ‘ 𝑁 ) ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 ∥ ( abs ‘ 𝑁 ) → 𝑀 ≤ ( abs ‘ 𝑁 ) ) ) |
| 6 | 5 | 3impb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ ( abs ‘ 𝑁 ) → 𝑀 ≤ ( abs ‘ 𝑁 ) ) ) |
| 7 | 2 6 | sylbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ ( abs ‘ 𝑁 ) ) ) |