This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmcl.p | ||
| dsmmcl.h | |||
| dsmmcl.i | |||
| dsmmcl.s | |||
| dsmmcl.r | |||
| dsmm0cl.z | |||
| Assertion | dsmm0cl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | ||
| 2 | dsmmcl.h | ||
| 3 | dsmmcl.i | ||
| 4 | dsmmcl.s | ||
| 5 | dsmmcl.r | ||
| 6 | dsmm0cl.z | ||
| 7 | 1 3 4 5 | prdsmndd | |
| 8 | eqid | ||
| 9 | 8 6 | mndidcl | |
| 10 | 7 9 | syl | |
| 11 | 1 3 4 5 | prds0g | |
| 12 | 11 6 | eqtr4di | |
| 13 | 12 | adantr | |
| 14 | 13 | fveq1d | |
| 15 | 5 | ffnd | |
| 16 | fvco2 | ||
| 17 | 15 16 | sylan | |
| 18 | 14 17 | eqtr3d | |
| 19 | nne | ||
| 20 | 18 19 | sylibr | |
| 21 | 20 | ralrimiva | |
| 22 | rabeq0 | ||
| 23 | 21 22 | sylibr | |
| 24 | 0fi | ||
| 25 | 23 24 | eqeltrdi | |
| 26 | eqid | ||
| 27 | 1 26 8 2 3 15 | dsmmelbas | |
| 28 | 10 25 27 | mpbir2and |