This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dprd | ⊢ DProd = ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdprd | ⊢ DProd | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | vh | ⊢ ℎ | |
| 5 | 4 | cv | ⊢ ℎ |
| 6 | 5 | cdm | ⊢ dom ℎ |
| 7 | csubg | ⊢ SubGrp | |
| 8 | 1 | cv | ⊢ 𝑔 |
| 9 | 8 7 | cfv | ⊢ ( SubGrp ‘ 𝑔 ) |
| 10 | 6 9 5 | wf | ⊢ ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) |
| 11 | vx | ⊢ 𝑥 | |
| 12 | vy | ⊢ 𝑦 | |
| 13 | 11 | cv | ⊢ 𝑥 |
| 14 | 13 | csn | ⊢ { 𝑥 } |
| 15 | 6 14 | cdif | ⊢ ( dom ℎ ∖ { 𝑥 } ) |
| 16 | 13 5 | cfv | ⊢ ( ℎ ‘ 𝑥 ) |
| 17 | ccntz | ⊢ Cntz | |
| 18 | 8 17 | cfv | ⊢ ( Cntz ‘ 𝑔 ) |
| 19 | 12 | cv | ⊢ 𝑦 |
| 20 | 19 5 | cfv | ⊢ ( ℎ ‘ 𝑦 ) |
| 21 | 20 18 | cfv | ⊢ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
| 22 | 16 21 | wss | ⊢ ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
| 23 | 22 12 15 | wral | ⊢ ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
| 24 | cmrc | ⊢ mrCls | |
| 25 | 9 24 | cfv | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) |
| 26 | 5 15 | cima | ⊢ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) |
| 27 | 26 | cuni | ⊢ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) |
| 28 | 27 25 | cfv | ⊢ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) |
| 29 | 16 28 | cin | ⊢ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) |
| 30 | c0g | ⊢ 0g | |
| 31 | 8 30 | cfv | ⊢ ( 0g ‘ 𝑔 ) |
| 32 | 31 | csn | ⊢ { ( 0g ‘ 𝑔 ) } |
| 33 | 29 32 | wceq | ⊢ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } |
| 34 | 23 33 | wa | ⊢ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) |
| 35 | 34 11 6 | wral | ⊢ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) |
| 36 | 10 35 | wa | ⊢ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) |
| 37 | 36 4 | cab | ⊢ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } |
| 38 | vf | ⊢ 𝑓 | |
| 39 | 3 | cv | ⊢ 𝑠 |
| 40 | 39 | cdm | ⊢ dom 𝑠 |
| 41 | 13 39 | cfv | ⊢ ( 𝑠 ‘ 𝑥 ) |
| 42 | 11 40 41 | cixp | ⊢ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) |
| 43 | cfsupp | ⊢ finSupp | |
| 44 | 5 31 43 | wbr | ⊢ ℎ finSupp ( 0g ‘ 𝑔 ) |
| 45 | 44 4 42 | crab | ⊢ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } |
| 46 | cgsu | ⊢ Σg | |
| 47 | 38 | cv | ⊢ 𝑓 |
| 48 | 8 47 46 | co | ⊢ ( 𝑔 Σg 𝑓 ) |
| 49 | 38 45 48 | cmpt | ⊢ ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) |
| 50 | 49 | crn | ⊢ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) |
| 51 | 1 3 2 37 50 | cmpo | ⊢ ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
| 52 | 0 51 | wceq | ⊢ DProd = ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |