This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance relation. (Contributed by NM, 15-Jun-1998) Extract brdom2g as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdomg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | |
| 2 | 1 | ex | ⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 5 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 6 | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 7 | vex | ⊢ 𝑓 ∈ V | |
| 8 | 7 | dmex | ⊢ dom 𝑓 ∈ V |
| 9 | 6 8 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
| 10 | 5 9 | syl | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
| 12 | 4 11 | pm5.21ni | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 13 | 12 | a1d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
| 14 | 2 13 | pm2.61i | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |