This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | ||
| dnwech.h | ⊢ 𝐻 = { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } | ||
| Assertion | dnwech | ⊢ ( 𝜑 → 𝐻 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| 2 | dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | |
| 4 | dnwech.h | ⊢ 𝐻 = { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } | |
| 5 | 1 2 3 | dnnumch3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ) |
| 6 | f1f1orn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 8 | f1f | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ) | |
| 9 | frn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On → ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On ) | |
| 10 | 5 8 9 | 3syl | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On ) |
| 11 | epweon | ⊢ E We On | |
| 12 | wess | ⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On → ( E We On → E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) | |
| 13 | 10 11 12 | mpisyl | ⊢ ( 𝜑 → E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 14 | eqid | ⊢ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } | |
| 15 | 14 | f1owe | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) → ( E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) ) |
| 16 | 7 13 15 | sylc | ⊢ ( 𝜑 → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) |
| 17 | fvex | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ∈ V | |
| 18 | 17 | epeli | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) |
| 19 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
| 21 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 22 | 21 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 23 | 20 22 | eleq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
| 24 | 18 23 | bitr2id | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) ) |
| 25 | 24 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ↔ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) ) ) |
| 26 | 25 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } ) |
| 27 | incom | ⊢ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ 𝐻 ) | |
| 28 | df-xp | ⊢ ( 𝐴 × 𝐴 ) = { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } | |
| 29 | 28 4 | ineq12i | ⊢ ( ( 𝐴 × 𝐴 ) ∩ 𝐻 ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } ) |
| 30 | inopab | ⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } | |
| 31 | 27 29 30 | 3eqtri | ⊢ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } |
| 32 | incom | ⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) | |
| 33 | 28 | ineq1i | ⊢ ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) |
| 34 | inopab | ⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } | |
| 35 | 32 33 34 | 3eqtri | ⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } |
| 36 | 26 31 35 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) ) |
| 37 | weeq1 | ⊢ ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝜑 → ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) |
| 39 | weinxp | ⊢ ( 𝐻 We 𝐴 ↔ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) | |
| 40 | weinxp | ⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) | |
| 41 | 38 39 40 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐻 We 𝐴 ↔ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) ) |
| 42 | 16 41 | mpbird | ⊢ ( 𝜑 → 𝐻 We 𝐴 ) |