This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| dnnumch.a | |- ( ph -> A e. V ) |
||
| dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
||
| dnwech.h | |- H = { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } |
||
| Assertion | dnwech | |- ( ph -> H We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| 2 | dnnumch.a | |- ( ph -> A e. V ) |
|
| 3 | dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
|
| 4 | dnwech.h | |- H = { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } |
|
| 5 | 1 2 3 | dnnumch3 | |- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |
| 6 | f1f1orn | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
| 8 | f1f | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) |
|
| 9 | frn | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) |
|
| 10 | 5 8 9 | 3syl | |- ( ph -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) |
| 11 | epweon | |- _E We On |
|
| 12 | wess | |- ( ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On -> ( _E We On -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) ) |
|
| 13 | 10 11 12 | mpisyl | |- ( ph -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
| 14 | eqid | |- { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } = { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } |
|
| 15 | 14 | f1owe | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) -> ( _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) |
| 16 | 7 13 15 | sylc | |- ( ph -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) |
| 17 | fvex | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) e. _V |
|
| 18 | 17 | epeli | |- ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) |
| 19 | 1 2 3 | dnnumch3lem | |- ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 20 | 19 | adantrr | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 21 | 1 2 3 | dnnumch3lem | |- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 22 | 21 | adantrl | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 23 | 20 22 | eleq12d | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) ) |
| 24 | 18 23 | bitr2id | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) |
| 25 | 24 | pm5.32da | |- ( ph -> ( ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) <-> ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) ) |
| 26 | 25 | opabbidv | |- ( ph -> { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } ) |
| 27 | incom | |- ( H i^i ( A X. A ) ) = ( ( A X. A ) i^i H ) |
|
| 28 | df-xp | |- ( A X. A ) = { <. v , w >. | ( v e. A /\ w e. A ) } |
|
| 29 | 28 4 | ineq12i | |- ( ( A X. A ) i^i H ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) |
| 30 | inopab | |- ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } |
|
| 31 | 27 29 30 | 3eqtri | |- ( H i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } |
| 32 | incom | |- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) |
|
| 33 | 28 | ineq1i | |- ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) |
| 34 | inopab | |- ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } |
|
| 35 | 32 33 34 | 3eqtri | |- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } |
| 36 | 26 31 35 | 3eqtr4g | |- ( ph -> ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) ) |
| 37 | weeq1 | |- ( ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) |
|
| 38 | 36 37 | syl | |- ( ph -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) |
| 39 | weinxp | |- ( H We A <-> ( H i^i ( A X. A ) ) We A ) |
|
| 40 | weinxp | |- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) |
|
| 41 | 38 39 40 | 3bitr4g | |- ( ph -> ( H We A <-> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) |
| 42 | 16 41 | mpbird | |- ( ph -> H We A ) |