This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | ||
| Assertion | dnnumch3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| 2 | dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | |
| 4 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑥 } ) ⊆ dom 𝐹 | |
| 5 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 6 | 5 | fndmi | ⊢ dom 𝐹 = On |
| 7 | 4 6 | sseqtri | ⊢ ( ◡ 𝐹 “ { 𝑥 } ) ⊆ On |
| 8 | 1 2 3 | dnnumch2 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |
| 9 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ran 𝐹 ) |
| 10 | inisegn0 | ⊢ ( 𝑥 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) |
| 12 | oninton | ⊢ ( ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑥 } ) ∈ On ) | |
| 13 | 7 11 12 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑥 } ) ∈ On ) |
| 14 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ) |
| 15 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
| 16 | 15 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
| 17 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 18 | 17 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
| 20 | fveq2 | ⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
| 22 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑣 } ) ⊆ dom 𝐹 | |
| 23 | 22 6 | sseqtri | ⊢ ( ◡ 𝐹 “ { 𝑣 } ) ⊆ On |
| 24 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ran 𝐹 ) |
| 25 | inisegn0 | ⊢ ( 𝑣 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) |
| 27 | onint | ⊢ ( ( ( ◡ 𝐹 “ { 𝑣 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ) | |
| 28 | 23 26 27 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ) |
| 29 | fniniseg | ⊢ ( 𝐹 Fn On → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) ) ) | |
| 30 | 5 29 | ax-mp | ⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) ) |
| 31 | 30 | simprbi | ⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
| 32 | 28 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
| 33 | 32 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
| 35 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ dom 𝐹 | |
| 36 | 35 6 | sseqtri | ⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On |
| 37 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
| 38 | inisegn0 | ⊢ ( 𝑤 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) | |
| 39 | 37 38 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
| 40 | onint | ⊢ ( ( ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) | |
| 41 | 36 39 40 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 42 | fniniseg | ⊢ ( 𝐹 Fn On → ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) ) ) | |
| 43 | 5 42 | ax-mp | ⊢ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) ) |
| 44 | 43 | simprbi | ⊢ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
| 45 | 41 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
| 46 | 45 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
| 48 | 21 34 47 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → 𝑣 = 𝑤 ) |
| 49 | 48 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) → 𝑣 = 𝑤 ) ) |
| 50 | 19 49 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) |
| 51 | 50 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) |
| 52 | dff13 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ) | |
| 53 | 14 51 52 | sylanbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ) |