This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | ||
| Assertion | dnnumch3lem | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | ⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) | |
| 2 | dnnumch.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | dnnumch.g | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) | |
| 5 | sneq | ⊢ ( 𝑥 = 𝑤 → { 𝑥 } = { 𝑤 } ) | |
| 6 | 5 | imaeq2d | ⊢ ( 𝑥 = 𝑤 → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 7 | 6 | inteqd | ⊢ ( 𝑥 = 𝑤 → ∩ ( ◡ 𝐹 “ { 𝑥 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) | |
| 9 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ dom 𝐹 | |
| 10 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 11 | 10 | fndmi | ⊢ dom 𝐹 = On |
| 12 | 9 11 | sseqtri | ⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On |
| 13 | 1 2 3 | dnnumch2 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |
| 14 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
| 15 | inisegn0 | ⊢ ( 𝑤 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
| 17 | oninton | ⊢ ( ( ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ) | |
| 18 | 12 16 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ) |
| 19 | 4 7 8 18 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |