This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the transitive closure of a class. This is the smallest relation containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ttrcl | ⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | 0 | cttrcl | ⊢ t++ 𝑅 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | vn | ⊢ 𝑛 | |
| 5 | com | ⊢ ω | |
| 6 | c1o | ⊢ 1o | |
| 7 | 5 6 | cdif | ⊢ ( ω ∖ 1o ) |
| 8 | vf | ⊢ 𝑓 | |
| 9 | 8 | cv | ⊢ 𝑓 |
| 10 | 4 | cv | ⊢ 𝑛 |
| 11 | 10 | csuc | ⊢ suc 𝑛 |
| 12 | 9 11 | wfn | ⊢ 𝑓 Fn suc 𝑛 |
| 13 | c0 | ⊢ ∅ | |
| 14 | 13 9 | cfv | ⊢ ( 𝑓 ‘ ∅ ) |
| 15 | 2 | cv | ⊢ 𝑥 |
| 16 | 14 15 | wceq | ⊢ ( 𝑓 ‘ ∅ ) = 𝑥 |
| 17 | 10 9 | cfv | ⊢ ( 𝑓 ‘ 𝑛 ) |
| 18 | 3 | cv | ⊢ 𝑦 |
| 19 | 17 18 | wceq | ⊢ ( 𝑓 ‘ 𝑛 ) = 𝑦 |
| 20 | 16 19 | wa | ⊢ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) |
| 21 | vm | ⊢ 𝑚 | |
| 22 | 21 | cv | ⊢ 𝑚 |
| 23 | 22 9 | cfv | ⊢ ( 𝑓 ‘ 𝑚 ) |
| 24 | 22 | csuc | ⊢ suc 𝑚 |
| 25 | 24 9 | cfv | ⊢ ( 𝑓 ‘ suc 𝑚 ) |
| 26 | 23 25 0 | wbr | ⊢ ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) |
| 27 | 26 21 10 | wral | ⊢ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) |
| 28 | 12 20 27 | w3a | ⊢ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
| 29 | 28 8 | wex | ⊢ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
| 30 | 29 4 7 | wrex | ⊢ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
| 31 | 30 2 3 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } |
| 32 | 1 31 | wceq | ⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } |