This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnttrcl | ⊢ ran t++ 𝑅 = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl | ⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } | |
| 2 | 1 | rneqi | ⊢ ran t++ 𝑅 = ran { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
| 3 | rnopab | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } = { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } | |
| 4 | 2 3 | eqtri | ⊢ ran t++ 𝑅 = { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
| 5 | fveq2 | ⊢ ( 𝑎 = ∪ 𝑛 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∪ 𝑛 ) ) | |
| 6 | suceq | ⊢ ( 𝑎 = ∪ 𝑛 → suc 𝑎 = suc ∪ 𝑛 ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑎 = ∪ 𝑛 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc ∪ 𝑛 ) ) |
| 8 | 5 7 | breq12d | ⊢ ( 𝑎 = ∪ 𝑛 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 ( 𝑓 ‘ suc ∪ 𝑛 ) ) ) |
| 9 | simpr3 | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 10 | df-1o | ⊢ 1o = suc ∅ | |
| 11 | 10 | difeq2i | ⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
| 12 | 11 | eleq2i | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) ) |
| 13 | peano1 | ⊢ ∅ ∈ ω | |
| 14 | eldifsucnn | ⊢ ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) |
| 16 | dif0 | ⊢ ( ω ∖ ∅ ) = ω | |
| 17 | 16 | rexeqi | ⊢ ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 18 | 12 15 17 | 3bitri | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 19 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 20 | ordunisuc | ⊢ ( Ord 𝑥 → ∪ suc 𝑥 = 𝑥 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥 ) |
| 22 | vex | ⊢ 𝑥 ∈ V | |
| 23 | 22 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 24 | 21 23 | eqeltrdi | ⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 ∈ suc 𝑥 ) |
| 25 | unieq | ⊢ ( 𝑛 = suc 𝑥 → ∪ 𝑛 = ∪ suc 𝑥 ) | |
| 26 | id | ⊢ ( 𝑛 = suc 𝑥 → 𝑛 = suc 𝑥 ) | |
| 27 | 25 26 | eleq12d | ⊢ ( 𝑛 = suc 𝑥 → ( ∪ 𝑛 ∈ 𝑛 ↔ ∪ suc 𝑥 ∈ suc 𝑥 ) ) |
| 28 | 24 27 | syl5ibrcom | ⊢ ( 𝑥 ∈ ω → ( 𝑛 = suc 𝑥 → ∪ 𝑛 ∈ 𝑛 ) ) |
| 29 | 28 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 → ∪ 𝑛 ∈ 𝑛 ) |
| 30 | 18 29 | sylbi | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ∪ 𝑛 ∈ 𝑛 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∪ 𝑛 ∈ 𝑛 ) |
| 32 | 8 9 31 | rspcdva | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 ( 𝑓 ‘ suc ∪ 𝑛 ) ) |
| 33 | suceq | ⊢ ( ∪ suc 𝑥 = 𝑥 → suc ∪ suc 𝑥 = suc 𝑥 ) | |
| 34 | 21 33 | syl | ⊢ ( 𝑥 ∈ ω → suc ∪ suc 𝑥 = suc 𝑥 ) |
| 35 | suceq | ⊢ ( ∪ 𝑛 = ∪ suc 𝑥 → suc ∪ 𝑛 = suc ∪ suc 𝑥 ) | |
| 36 | 25 35 | syl | ⊢ ( 𝑛 = suc 𝑥 → suc ∪ 𝑛 = suc ∪ suc 𝑥 ) |
| 37 | 36 26 | eqeq12d | ⊢ ( 𝑛 = suc 𝑥 → ( suc ∪ 𝑛 = 𝑛 ↔ suc ∪ suc 𝑥 = suc 𝑥 ) ) |
| 38 | 34 37 | syl5ibrcom | ⊢ ( 𝑥 ∈ ω → ( 𝑛 = suc 𝑥 → suc ∪ 𝑛 = 𝑛 ) ) |
| 39 | 38 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 → suc ∪ 𝑛 = 𝑛 ) |
| 40 | 18 39 | sylbi | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → suc ∪ 𝑛 = 𝑛 ) |
| 41 | 40 | fveq2d | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 43 | simpr2r | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 𝑦 ) | |
| 44 | 42 43 | eqtrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = 𝑦 ) |
| 45 | 32 44 | breqtrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 𝑦 ) |
| 46 | fvex | ⊢ ( 𝑓 ‘ ∪ 𝑛 ) ∈ V | |
| 47 | vex | ⊢ 𝑦 ∈ V | |
| 48 | 46 47 | brelrn | ⊢ ( ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 𝑦 → 𝑦 ∈ ran 𝑅 ) |
| 49 | 45 48 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑦 ∈ ran 𝑅 ) |
| 50 | 49 | ex | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) ) |
| 51 | 50 | exlimdv | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) ) |
| 52 | 51 | rexlimiv | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) |
| 53 | 52 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) |
| 54 | 53 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ⊆ ran 𝑅 |
| 55 | 4 54 | eqsstri | ⊢ ran t++ 𝑅 ⊆ ran 𝑅 |
| 56 | rnresv | ⊢ ran ( 𝑅 ↾ V ) = ran 𝑅 | |
| 57 | relres | ⊢ Rel ( 𝑅 ↾ V ) | |
| 58 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) | |
| 59 | 57 58 | ax-mp | ⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
| 60 | ttrclresv | ⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 | |
| 61 | 59 60 | sseqtri | ⊢ ( 𝑅 ↾ V ) ⊆ t++ 𝑅 |
| 62 | 61 | rnssi | ⊢ ran ( 𝑅 ↾ V ) ⊆ ran t++ 𝑅 |
| 63 | 56 62 | eqsstrri | ⊢ ran 𝑅 ⊆ ran t++ 𝑅 |
| 64 | 55 63 | eqssi | ⊢ ran t++ 𝑅 = ran 𝑅 |