This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of excom and biconditional form of excomimw . Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | excomw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) | |
| excomw.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | excomw | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | excomw.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 1 | excomimw | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜑 ) |
| 4 | 2 | excomimw | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 5 | 3 4 | impbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) |