This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of dm0rn0 as of 24-Jan-2026. (Contributed by NM, 21-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dm0rn0OLD | ⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | ⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ) | |
| 2 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) | |
| 3 | 1 2 | xchbinx | ⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 4 | alnex | ⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 6 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | nbn | ⊢ ( ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
| 9 | noel | ⊢ ¬ 𝑦 ∈ ∅ | |
| 10 | 9 | nbn | ⊢ ( ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 12 | 5 8 11 | 3bitr3i | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 13 | eqabcb | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) | |
| 14 | eqabcb | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) | |
| 15 | 12 13 14 | 3bitr4i | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 16 | df-dm | ⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } | |
| 17 | 16 | eqeq1i | ⊢ ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ) |
| 18 | dfrn2 | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } | |
| 19 | 18 | eqeq1i | ⊢ ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 20 | 15 17 19 | 3bitr4i | ⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |