This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the domain of a class. Definition 3 of Suppes p. 59. For example, F = { <. 2 , 6 >. , <. 3 , 9 >. } -> dom F = { 2 , 3 } ( ex-dm ). Another example is the domain of the complex arctangent, ( A e. dom arctan <-> ( A e. CC /\ A =/= -ui /\ A =/= i ) ) (for proof see atandm ). Contrast with range (defined in df-rn ). For alternate definitions see dfdm2 , dfdm3 , and dfdm4 . The notation " dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dm | ⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | cdm | ⊢ dom 𝐴 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 2 | cv | ⊢ 𝑥 |
| 5 | 3 | cv | ⊢ 𝑦 |
| 6 | 4 5 0 | wbr | ⊢ 𝑥 𝐴 𝑦 |
| 7 | 6 3 | wex | ⊢ ∃ 𝑦 𝑥 𝐴 𝑦 |
| 8 | 7 2 | cab | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
| 9 | 1 8 | wceq | ⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |