This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuassen | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( A |_| ( B |_| C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | simp1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> A e. V ) |
|
| 3 | xpsnen2g | |- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. A ) ~~ A ) |
| 5 | 4 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ ( { (/) } X. A ) ) |
| 6 | 1oex | |- 1o e. _V |
|
| 7 | snex | |- { (/) } e. _V |
|
| 8 | simp2 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) |
|
| 9 | xpexg | |- ( ( { (/) } e. _V /\ B e. W ) -> ( { (/) } X. B ) e. _V ) |
|
| 10 | 7 8 9 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) e. _V ) |
| 11 | xpsnen2g | |- ( ( 1o e. _V /\ ( { (/) } X. B ) e. _V ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) |
|
| 12 | 6 10 11 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) |
| 13 | xpsnen2g | |- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
|
| 14 | 1 8 13 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) |
| 15 | entr | |- ( ( ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) /\ ( { (/) } X. B ) ~~ B ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) |
| 17 | 16 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> B ~~ ( { 1o } X. ( { (/) } X. B ) ) ) |
| 18 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) |
|
| 19 | 18 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) |
| 20 | djuenun | |- ( ( A ~~ ( { (/) } X. A ) /\ B ~~ ( { 1o } X. ( { (/) } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) |
|
| 21 | 5 17 19 20 | syl3anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) |
| 22 | snex | |- { 1o } e. _V |
|
| 23 | simp3 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) |
|
| 24 | xpexg | |- ( ( { 1o } e. _V /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
|
| 25 | 22 23 24 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
| 26 | xpsnen2g | |- ( ( 1o e. _V /\ ( { 1o } X. C ) e. _V ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) |
|
| 27 | 6 25 26 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) |
| 28 | xpsnen2g | |- ( ( 1o e. _V /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
|
| 29 | 6 23 28 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
| 30 | entr | |- ( ( ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) /\ ( { 1o } X. C ) ~~ C ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) |
| 32 | 31 | ensymd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> C ~~ ( { 1o } X. ( { 1o } X. C ) ) ) |
| 33 | indir | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) |
|
| 34 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
|
| 35 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) |
|
| 36 | 35 | xpeq2i | |- ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( { 1o } X. (/) ) |
| 37 | xpindi | |- ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) |
|
| 38 | xp0 | |- ( { 1o } X. (/) ) = (/) |
|
| 39 | 36 37 38 | 3eqtr3i | |- ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
| 40 | 34 39 | uneq12i | |- ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = ( (/) u. (/) ) |
| 41 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 42 | 40 41 | eqtri | |- ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = (/) |
| 43 | 33 42 | eqtri | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
| 44 | 43 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) |
| 45 | djuenun | |- ( ( ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) /\ C ~~ ( { 1o } X. ( { 1o } X. C ) ) /\ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
|
| 46 | 21 32 44 45 | syl3anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
| 47 | df-dju | |- ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) |
|
| 48 | 47 | xpeq2i | |- ( { 1o } X. ( B |_| C ) ) = ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
| 49 | xpundi | |- ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
|
| 50 | 48 49 | eqtri | |- ( { 1o } X. ( B |_| C ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
| 51 | 50 | uneq2i | |- ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
| 52 | df-dju | |- ( A |_| ( B |_| C ) ) = ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) |
|
| 53 | unass | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
|
| 54 | 51 52 53 | 3eqtr4i | |- ( A |_| ( B |_| C ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
| 55 | 46 54 | breqtrrdi | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( A |_| ( B |_| C ) ) ) |