This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem8.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem8.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem8.3 | ⊢ 𝐷 ≠ 0 | ||
| divalglem8.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | ||
| Assertion | divalglem8 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑋 < ( abs ‘ 𝐷 ) ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ) → ( 𝐾 ∈ ℤ → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → 𝑋 = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem8.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem8.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem8.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | divalglem8.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | |
| 5 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ℕ0 |
| 6 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
| 7 | 5 6 | sstri | ⊢ 𝑆 ⊆ ℂ |
| 8 | 7 | sseli | ⊢ ( 𝑌 ∈ 𝑆 → 𝑌 ∈ ℂ ) |
| 9 | 7 | sseli | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ ℂ ) |
| 10 | nnabscl | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( abs ‘ 𝐷 ) ∈ ℕ ) | |
| 11 | 2 3 10 | mp2an | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ |
| 12 | 11 | nnzi | ⊢ ( abs ‘ 𝐷 ) ∈ ℤ |
| 13 | zmulcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( abs ‘ 𝐷 ) ∈ ℤ ) → ( 𝐾 · ( abs ‘ 𝐷 ) ) ∈ ℤ ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · ( abs ‘ 𝐷 ) ) ∈ ℤ ) |
| 15 | 14 | zcnd | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · ( abs ‘ 𝐷 ) ) ∈ ℂ ) |
| 16 | subadd | ⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ ( 𝐾 · ( abs ‘ 𝐷 ) ) ∈ ℂ ) → ( ( 𝑌 − 𝑋 ) = ( 𝐾 · ( abs ‘ 𝐷 ) ) ↔ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = 𝑌 ) ) | |
| 17 | 8 9 15 16 | syl3an | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑌 − 𝑋 ) = ( 𝐾 · ( abs ‘ 𝐷 ) ) ↔ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = 𝑌 ) ) |
| 18 | 17 | 3com12 | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑌 − 𝑋 ) = ( 𝐾 · ( abs ‘ 𝐷 ) ) ↔ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = 𝑌 ) ) |
| 19 | eqcom | ⊢ ( ( 𝑌 − 𝑋 ) = ( 𝐾 · ( abs ‘ 𝐷 ) ) ↔ ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ) | |
| 20 | eqcom | ⊢ ( ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = 𝑌 ↔ 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) | |
| 21 | 18 19 20 | 3bitr3g | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ↔ 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) ) |
| 22 | 21 | 3adant1r | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ↔ 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) ) |
| 23 | 22 | 3adant2r | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ↔ 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) ) |
| 24 | breq1 | ⊢ ( 𝑧 = 𝑌 → ( 𝑧 < ( abs ‘ 𝐷 ) ↔ 𝑌 < ( abs ‘ 𝐷 ) ) ) | |
| 25 | eleq1 | ⊢ ( 𝑧 = 𝑌 → ( 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ 𝑌 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) | |
| 26 | 24 25 | imbi12d | ⊢ ( 𝑧 = 𝑌 → ( ( 𝑧 < ( abs ‘ 𝐷 ) → 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ↔ ( 𝑌 < ( abs ‘ 𝐷 ) → 𝑌 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) ) |
| 27 | 5 | sseli | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ℕ0 ) |
| 28 | elnn0z | ⊢ ( 𝑧 ∈ ℕ0 ↔ ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ) ) |
| 30 | 29 | anim1i | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) → ( ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ) ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ) |
| 31 | df-3an | ⊢ ( ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ↔ ( ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ) ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) → ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ) |
| 33 | 0z | ⊢ 0 ∈ ℤ | |
| 34 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ ( abs ‘ 𝐷 ) ∈ ℤ ) → ( 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ) ) | |
| 35 | 33 12 34 | mp2an | ⊢ ( 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( 𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) ) |
| 36 | 32 35 | sylibr | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑧 < ( abs ‘ 𝐷 ) ) → 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) |
| 37 | 36 | ex | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑧 < ( abs ‘ 𝐷 ) → 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 38 | 26 37 | vtoclga | ⊢ ( 𝑌 ∈ 𝑆 → ( 𝑌 < ( abs ‘ 𝐷 ) → 𝑌 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 39 | eleq1 | ⊢ ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → ( 𝑌 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) | |
| 40 | 39 | biimpd | ⊢ ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → ( 𝑌 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) → ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 41 | 38 40 | sylan9 | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) → ( 𝑌 < ( abs ‘ 𝐷 ) → ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 42 | 41 | impancom | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) → ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 43 | 42 | 3ad2ant2 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 44 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 < ( abs ‘ 𝐷 ) ↔ 𝑋 < ( abs ‘ 𝐷 ) ) ) | |
| 45 | eleq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) | |
| 46 | 44 45 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑧 < ( abs ‘ 𝐷 ) → 𝑧 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ↔ ( 𝑋 < ( abs ‘ 𝐷 ) → 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) ) |
| 47 | 46 37 | vtoclga | ⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 < ( abs ‘ 𝐷 ) → 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) → 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) |
| 49 | 2 3 | divalglem7 | ⊢ ( ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 50 | 48 49 | sylan | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 51 | 50 | 3adant2 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 52 | 51 | con2d | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) → ¬ 𝐾 ≠ 0 ) ) |
| 53 | 43 52 | syld | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → ¬ 𝐾 ≠ 0 ) ) |
| 54 | df-ne | ⊢ ( 𝐾 ≠ 0 ↔ ¬ 𝐾 = 0 ) | |
| 55 | 54 | con2bii | ⊢ ( 𝐾 = 0 ↔ ¬ 𝐾 ≠ 0 ) |
| 56 | 53 55 | imbitrrdi | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝑌 = ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) → 𝐾 = 0 ) ) |
| 57 | 23 56 | sylbid | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → 𝐾 = 0 ) ) |
| 58 | oveq1 | ⊢ ( 𝐾 = 0 → ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 0 · ( abs ‘ 𝐷 ) ) ) | |
| 59 | 11 | nncni | ⊢ ( abs ‘ 𝐷 ) ∈ ℂ |
| 60 | 59 | mul02i | ⊢ ( 0 · ( abs ‘ 𝐷 ) ) = 0 |
| 61 | 58 60 | eqtrdi | ⊢ ( 𝐾 = 0 → ( 𝐾 · ( abs ‘ 𝐷 ) ) = 0 ) |
| 62 | 61 | eqeq1d | ⊢ ( 𝐾 = 0 → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ↔ 0 = ( 𝑌 − 𝑋 ) ) ) |
| 63 | 62 | biimpac | ⊢ ( ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ∧ 𝐾 = 0 ) → 0 = ( 𝑌 − 𝑋 ) ) |
| 64 | subeq0 | ⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( 𝑌 − 𝑋 ) = 0 ↔ 𝑌 = 𝑋 ) ) | |
| 65 | 8 9 64 | syl2anr | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑌 − 𝑋 ) = 0 ↔ 𝑌 = 𝑋 ) ) |
| 66 | eqcom | ⊢ ( ( 𝑌 − 𝑋 ) = 0 ↔ 0 = ( 𝑌 − 𝑋 ) ) | |
| 67 | eqcom | ⊢ ( 𝑌 = 𝑋 ↔ 𝑋 = 𝑌 ) | |
| 68 | 65 66 67 | 3bitr3g | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 0 = ( 𝑌 − 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 69 | 63 68 | imbitrid | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ∧ 𝐾 = 0 ) → 𝑋 = 𝑌 ) ) |
| 70 | 69 | ad2ant2r | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ) → ( ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ∧ 𝐾 = 0 ) → 𝑋 = 𝑌 ) ) |
| 71 | 70 | 3adant3 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) ∧ 𝐾 = 0 ) → 𝑋 = 𝑌 ) ) |
| 72 | 71 | expd | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → ( 𝐾 = 0 → 𝑋 = 𝑌 ) ) ) |
| 73 | 57 72 | mpdd | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 74 | 73 | 3expia | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑋 < ( abs ‘ 𝐷 ) ) ∧ ( 𝑌 ∈ 𝑆 ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ) → ( 𝐾 ∈ ℤ → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → 𝑋 = 𝑌 ) ) ) |
| 75 | 74 | an4s | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑋 < ( abs ‘ 𝐷 ) ∧ 𝑌 < ( abs ‘ 𝐷 ) ) ) → ( 𝐾 ∈ ℤ → ( ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( 𝑌 − 𝑋 ) → 𝑋 = 𝑌 ) ) ) |