This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem8.1 | |- N e. ZZ |
|
| divalglem8.2 | |- D e. ZZ |
||
| divalglem8.3 | |- D =/= 0 |
||
| divalglem8.4 | |- S = { r e. NN0 | D || ( N - r ) } |
||
| Assertion | divalglem8 | |- ( ( ( X e. S /\ Y e. S ) /\ ( X < ( abs ` D ) /\ Y < ( abs ` D ) ) ) -> ( K e. ZZ -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem8.1 | |- N e. ZZ |
|
| 2 | divalglem8.2 | |- D e. ZZ |
|
| 3 | divalglem8.3 | |- D =/= 0 |
|
| 4 | divalglem8.4 | |- S = { r e. NN0 | D || ( N - r ) } |
|
| 5 | 4 | ssrab3 | |- S C_ NN0 |
| 6 | nn0sscn | |- NN0 C_ CC |
|
| 7 | 5 6 | sstri | |- S C_ CC |
| 8 | 7 | sseli | |- ( Y e. S -> Y e. CC ) |
| 9 | 7 | sseli | |- ( X e. S -> X e. CC ) |
| 10 | nnabscl | |- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
|
| 11 | 2 3 10 | mp2an | |- ( abs ` D ) e. NN |
| 12 | 11 | nnzi | |- ( abs ` D ) e. ZZ |
| 13 | zmulcl | |- ( ( K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( K x. ( abs ` D ) ) e. ZZ ) |
|
| 14 | 12 13 | mpan2 | |- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. ZZ ) |
| 15 | 14 | zcnd | |- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. CC ) |
| 16 | subadd | |- ( ( Y e. CC /\ X e. CC /\ ( K x. ( abs ` D ) ) e. CC ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
|
| 17 | 8 9 15 16 | syl3an | |- ( ( Y e. S /\ X e. S /\ K e. ZZ ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
| 18 | 17 | 3com12 | |- ( ( X e. S /\ Y e. S /\ K e. ZZ ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
| 19 | eqcom | |- ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( K x. ( abs ` D ) ) = ( Y - X ) ) |
|
| 20 | eqcom | |- ( ( X + ( K x. ( abs ` D ) ) ) = Y <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) |
|
| 21 | 18 19 20 | 3bitr3g | |- ( ( X e. S /\ Y e. S /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 22 | 21 | 3adant1r | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ Y e. S /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 23 | 22 | 3adant2r | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 24 | breq1 | |- ( z = Y -> ( z < ( abs ` D ) <-> Y < ( abs ` D ) ) ) |
|
| 25 | eleq1 | |- ( z = Y -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
|
| 26 | 24 25 | imbi12d | |- ( z = Y -> ( ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( Y < ( abs ` D ) -> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 27 | 5 | sseli | |- ( z e. S -> z e. NN0 ) |
| 28 | elnn0z | |- ( z e. NN0 <-> ( z e. ZZ /\ 0 <_ z ) ) |
|
| 29 | 27 28 | sylib | |- ( z e. S -> ( z e. ZZ /\ 0 <_ z ) ) |
| 30 | 29 | anim1i | |- ( ( z e. S /\ z < ( abs ` D ) ) -> ( ( z e. ZZ /\ 0 <_ z ) /\ z < ( abs ` D ) ) ) |
| 31 | df-3an | |- ( ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) <-> ( ( z e. ZZ /\ 0 <_ z ) /\ z < ( abs ` D ) ) ) |
|
| 32 | 30 31 | sylibr | |- ( ( z e. S /\ z < ( abs ` D ) ) -> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) |
| 33 | 0z | |- 0 e. ZZ |
|
| 34 | elfzm11 | |- ( ( 0 e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) ) |
|
| 35 | 33 12 34 | mp2an | |- ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) |
| 36 | 32 35 | sylibr | |- ( ( z e. S /\ z < ( abs ` D ) ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
| 37 | 36 | ex | |- ( z e. S -> ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 38 | 26 37 | vtoclga | |- ( Y e. S -> ( Y < ( abs ` D ) -> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 39 | eleq1 | |- ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
|
| 40 | 39 | biimpd | |- ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 41 | 38 40 | sylan9 | |- ( ( Y e. S /\ Y = ( X + ( K x. ( abs ` D ) ) ) ) -> ( Y < ( abs ` D ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 42 | 41 | impancom | |- ( ( Y e. S /\ Y < ( abs ` D ) ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 43 | 42 | 3ad2ant2 | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 44 | breq1 | |- ( z = X -> ( z < ( abs ` D ) <-> X < ( abs ` D ) ) ) |
|
| 45 | eleq1 | |- ( z = X -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
|
| 46 | 44 45 | imbi12d | |- ( z = X -> ( ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( X < ( abs ` D ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 47 | 46 37 | vtoclga | |- ( X e. S -> ( X < ( abs ` D ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 48 | 47 | imp | |- ( ( X e. S /\ X < ( abs ` D ) ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
| 49 | 2 3 | divalglem7 | |- ( ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 50 | 48 49 | sylan | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 51 | 50 | 3adant2 | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 52 | 51 | con2d | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) -> -. K =/= 0 ) ) |
| 53 | 43 52 | syld | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> -. K =/= 0 ) ) |
| 54 | df-ne | |- ( K =/= 0 <-> -. K = 0 ) |
|
| 55 | 54 | con2bii | |- ( K = 0 <-> -. K =/= 0 ) |
| 56 | 53 55 | imbitrrdi | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> K = 0 ) ) |
| 57 | 23 56 | sylbid | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> K = 0 ) ) |
| 58 | oveq1 | |- ( K = 0 -> ( K x. ( abs ` D ) ) = ( 0 x. ( abs ` D ) ) ) |
|
| 59 | 11 | nncni | |- ( abs ` D ) e. CC |
| 60 | 59 | mul02i | |- ( 0 x. ( abs ` D ) ) = 0 |
| 61 | 58 60 | eqtrdi | |- ( K = 0 -> ( K x. ( abs ` D ) ) = 0 ) |
| 62 | 61 | eqeq1d | |- ( K = 0 -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> 0 = ( Y - X ) ) ) |
| 63 | 62 | biimpac | |- ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> 0 = ( Y - X ) ) |
| 64 | subeq0 | |- ( ( Y e. CC /\ X e. CC ) -> ( ( Y - X ) = 0 <-> Y = X ) ) |
|
| 65 | 8 9 64 | syl2anr | |- ( ( X e. S /\ Y e. S ) -> ( ( Y - X ) = 0 <-> Y = X ) ) |
| 66 | eqcom | |- ( ( Y - X ) = 0 <-> 0 = ( Y - X ) ) |
|
| 67 | eqcom | |- ( Y = X <-> X = Y ) |
|
| 68 | 65 66 67 | 3bitr3g | |- ( ( X e. S /\ Y e. S ) -> ( 0 = ( Y - X ) <-> X = Y ) ) |
| 69 | 63 68 | imbitrid | |- ( ( X e. S /\ Y e. S ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 70 | 69 | ad2ant2r | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 71 | 70 | 3adant3 | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 72 | 71 | expd | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> ( K = 0 -> X = Y ) ) ) |
| 73 | 57 72 | mpdd | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) |
| 74 | 73 | 3expia | |- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) ) -> ( K e. ZZ -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) ) |
| 75 | 74 | an4s | |- ( ( ( X e. S /\ Y e. S ) /\ ( X < ( abs ` D ) /\ Y < ( abs ` D ) ) ) -> ( K e. ZZ -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) ) |