This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem7.1 | ⊢ 𝐷 ∈ ℤ | |
| divalglem7.2 | ⊢ 𝐷 ≠ 0 | ||
| Assertion | divalglem7 | ⊢ ( ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem7.1 | ⊢ 𝐷 ∈ ℤ | |
| 2 | divalglem7.2 | ⊢ 𝐷 ≠ 0 | |
| 3 | oveq1 | ⊢ ( 𝑋 = if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) → ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑋 = if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) → ( ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 5 | 4 | notbid | ⊢ ( 𝑋 = if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) → ( ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑋 = if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) → ( ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ↔ ( 𝐾 ≠ 0 → ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) ) |
| 7 | neeq1 | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( 𝐾 ≠ 0 ↔ if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) ≠ 0 ) ) | |
| 8 | oveq1 | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( 𝐾 · ( abs ‘ 𝐷 ) ) = ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) = ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 11 | 10 | notbid | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |
| 12 | 7 11 | imbi12d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( ( 𝐾 ≠ 0 → ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ↔ ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) ≠ 0 → ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) ) |
| 13 | nnabscl | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( abs ‘ 𝐷 ) ∈ ℕ ) | |
| 14 | 1 2 13 | mp2an | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ |
| 15 | 0z | ⊢ 0 ∈ ℤ | |
| 16 | 0le0 | ⊢ 0 ≤ 0 | |
| 17 | 14 | nngt0i | ⊢ 0 < ( abs ‘ 𝐷 ) |
| 18 | 14 | nnzi | ⊢ ( abs ‘ 𝐷 ) ∈ ℤ |
| 19 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ ( abs ‘ 𝐷 ) ∈ ℤ ) → ( 0 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( 0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < ( abs ‘ 𝐷 ) ) ) ) | |
| 20 | 15 18 19 | mp2an | ⊢ ( 0 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ↔ ( 0 ∈ ℤ ∧ 0 ≤ 0 ∧ 0 < ( abs ‘ 𝐷 ) ) ) |
| 21 | 15 16 17 20 | mpbir3an | ⊢ 0 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) |
| 22 | 21 | elimel | ⊢ if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) |
| 23 | 15 | elimel | ⊢ if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) ∈ ℤ |
| 24 | 14 22 23 | divalglem6 | ⊢ ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) ≠ 0 → ¬ ( if ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) , 𝑋 , 0 ) + ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) |
| 25 | 6 12 24 | dedth2h | ⊢ ( ( 𝑋 ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · ( abs ‘ 𝐷 ) ) ) ∈ ( 0 ... ( ( abs ‘ 𝐷 ) − 1 ) ) ) ) |