This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem6.1 | ⊢ 𝐴 ∈ ℕ | |
| divalglem6.2 | ⊢ 𝑋 ∈ ( 0 ... ( 𝐴 − 1 ) ) | ||
| divalglem6.3 | ⊢ 𝐾 ∈ ℤ | ||
| Assertion | divalglem6 | ⊢ ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem6.1 | ⊢ 𝐴 ∈ ℕ | |
| 2 | divalglem6.2 | ⊢ 𝑋 ∈ ( 0 ... ( 𝐴 − 1 ) ) | |
| 3 | divalglem6.3 | ⊢ 𝐾 ∈ ℤ | |
| 4 | 3 | zrei | ⊢ 𝐾 ∈ ℝ |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 4 5 | lttri2i | ⊢ ( 𝐾 ≠ 0 ↔ ( 𝐾 < 0 ∨ 0 < 𝐾 ) ) |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | 1 | nnzi | ⊢ 𝐴 ∈ ℤ |
| 9 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑋 ∈ ( 0 ... ( 𝐴 − 1 ) ) ↔ ( 𝑋 ∈ ℤ ∧ 0 ≤ 𝑋 ∧ 𝑋 < 𝐴 ) ) ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( 𝑋 ∈ ( 0 ... ( 𝐴 − 1 ) ) ↔ ( 𝑋 ∈ ℤ ∧ 0 ≤ 𝑋 ∧ 𝑋 < 𝐴 ) ) |
| 11 | 2 10 | mpbi | ⊢ ( 𝑋 ∈ ℤ ∧ 0 ≤ 𝑋 ∧ 𝑋 < 𝐴 ) |
| 12 | 11 | simp3i | ⊢ 𝑋 < 𝐴 |
| 13 | 11 | simp1i | ⊢ 𝑋 ∈ ℤ |
| 14 | 13 | zrei | ⊢ 𝑋 ∈ ℝ |
| 15 | 1 | nnrei | ⊢ 𝐴 ∈ ℝ |
| 16 | 4 15 | remulcli | ⊢ ( 𝐾 · 𝐴 ) ∈ ℝ |
| 17 | 14 15 16 | ltadd1i | ⊢ ( 𝑋 < 𝐴 ↔ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < ( 𝐴 + ( 𝐾 · 𝐴 ) ) ) |
| 18 | 12 17 | mpbi | ⊢ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < ( 𝐴 + ( 𝐾 · 𝐴 ) ) |
| 19 | 4 | renegcli | ⊢ - 𝐾 ∈ ℝ |
| 20 | 1 | nnnn0i | ⊢ 𝐴 ∈ ℕ0 |
| 21 | 20 | nn0ge0i | ⊢ 0 ≤ 𝐴 |
| 22 | lemulge12 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ - 𝐾 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ - 𝐾 ) ) → 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) | |
| 23 | 22 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( - 𝐾 ∈ ℝ ∧ 1 ≤ - 𝐾 ) ) → 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) |
| 24 | 15 21 23 | mpanl12 | ⊢ ( ( - 𝐾 ∈ ℝ ∧ 1 ≤ - 𝐾 ) → 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) |
| 25 | 19 24 | mpan | ⊢ ( 1 ≤ - 𝐾 → 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) |
| 26 | lt0neg1 | ⊢ ( 𝐾 ∈ ℝ → ( 𝐾 < 0 ↔ 0 < - 𝐾 ) ) | |
| 27 | 4 26 | ax-mp | ⊢ ( 𝐾 < 0 ↔ 0 < - 𝐾 ) |
| 28 | znegcl | ⊢ ( 𝐾 ∈ ℤ → - 𝐾 ∈ ℤ ) | |
| 29 | 3 28 | ax-mp | ⊢ - 𝐾 ∈ ℤ |
| 30 | zltp1le | ⊢ ( ( 0 ∈ ℤ ∧ - 𝐾 ∈ ℤ ) → ( 0 < - 𝐾 ↔ ( 0 + 1 ) ≤ - 𝐾 ) ) | |
| 31 | 7 29 30 | mp2an | ⊢ ( 0 < - 𝐾 ↔ ( 0 + 1 ) ≤ - 𝐾 ) |
| 32 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 33 | 32 | breq1i | ⊢ ( ( 0 + 1 ) ≤ - 𝐾 ↔ 1 ≤ - 𝐾 ) |
| 34 | 31 33 | bitri | ⊢ ( 0 < - 𝐾 ↔ 1 ≤ - 𝐾 ) |
| 35 | 27 34 | bitri | ⊢ ( 𝐾 < 0 ↔ 1 ≤ - 𝐾 ) |
| 36 | 4 | recni | ⊢ 𝐾 ∈ ℂ |
| 37 | 15 | recni | ⊢ 𝐴 ∈ ℂ |
| 38 | 36 37 | mulneg1i | ⊢ ( - 𝐾 · 𝐴 ) = - ( 𝐾 · 𝐴 ) |
| 39 | 38 | oveq2i | ⊢ ( 𝐴 − ( - 𝐾 · 𝐴 ) ) = ( 𝐴 − - ( 𝐾 · 𝐴 ) ) |
| 40 | 16 | recni | ⊢ ( 𝐾 · 𝐴 ) ∈ ℂ |
| 41 | 37 40 | subnegi | ⊢ ( 𝐴 − - ( 𝐾 · 𝐴 ) ) = ( 𝐴 + ( 𝐾 · 𝐴 ) ) |
| 42 | 39 41 | eqtri | ⊢ ( 𝐴 − ( - 𝐾 · 𝐴 ) ) = ( 𝐴 + ( 𝐾 · 𝐴 ) ) |
| 43 | 42 | breq1i | ⊢ ( ( 𝐴 − ( - 𝐾 · 𝐴 ) ) ≤ 0 ↔ ( 𝐴 + ( 𝐾 · 𝐴 ) ) ≤ 0 ) |
| 44 | 19 15 | remulcli | ⊢ ( - 𝐾 · 𝐴 ) ∈ ℝ |
| 45 | suble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( - 𝐾 · 𝐴 ) ∈ ℝ ) → ( ( 𝐴 − ( - 𝐾 · 𝐴 ) ) ≤ 0 ↔ 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) ) | |
| 46 | 15 44 45 | mp2an | ⊢ ( ( 𝐴 − ( - 𝐾 · 𝐴 ) ) ≤ 0 ↔ 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) |
| 47 | 43 46 | bitr3i | ⊢ ( ( 𝐴 + ( 𝐾 · 𝐴 ) ) ≤ 0 ↔ 𝐴 ≤ ( - 𝐾 · 𝐴 ) ) |
| 48 | 25 35 47 | 3imtr4i | ⊢ ( 𝐾 < 0 → ( 𝐴 + ( 𝐾 · 𝐴 ) ) ≤ 0 ) |
| 49 | 14 16 | readdcli | ⊢ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ℝ |
| 50 | 15 16 | readdcli | ⊢ ( 𝐴 + ( 𝐾 · 𝐴 ) ) ∈ ℝ |
| 51 | 49 50 5 | ltletri | ⊢ ( ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) < ( 𝐴 + ( 𝐾 · 𝐴 ) ) ∧ ( 𝐴 + ( 𝐾 · 𝐴 ) ) ≤ 0 ) → ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 0 ) |
| 52 | 18 48 51 | sylancr | ⊢ ( 𝐾 < 0 → ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 0 ) |
| 53 | 49 5 | ltnlei | ⊢ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 0 ↔ ¬ 0 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) |
| 54 | 52 53 | sylib | ⊢ ( 𝐾 < 0 → ¬ 0 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) |
| 55 | elfzle1 | ⊢ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) → 0 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) | |
| 56 | 54 55 | nsyl | ⊢ ( 𝐾 < 0 → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ) |
| 57 | zltp1le | ⊢ ( ( 0 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 0 < 𝐾 ↔ ( 0 + 1 ) ≤ 𝐾 ) ) | |
| 58 | 7 3 57 | mp2an | ⊢ ( 0 < 𝐾 ↔ ( 0 + 1 ) ≤ 𝐾 ) |
| 59 | 32 | breq1i | ⊢ ( ( 0 + 1 ) ≤ 𝐾 ↔ 1 ≤ 𝐾 ) |
| 60 | 58 59 | bitri | ⊢ ( 0 < 𝐾 ↔ 1 ≤ 𝐾 ) |
| 61 | lemulge12 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐾 ) ) → 𝐴 ≤ ( 𝐾 · 𝐴 ) ) | |
| 62 | 15 4 61 | mpanl12 | ⊢ ( ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐾 ) → 𝐴 ≤ ( 𝐾 · 𝐴 ) ) |
| 63 | 21 62 | mpan | ⊢ ( 1 ≤ 𝐾 → 𝐴 ≤ ( 𝐾 · 𝐴 ) ) |
| 64 | 60 63 | sylbi | ⊢ ( 0 < 𝐾 → 𝐴 ≤ ( 𝐾 · 𝐴 ) ) |
| 65 | 11 | simp2i | ⊢ 0 ≤ 𝑋 |
| 66 | addge02 | ⊢ ( ( ( 𝐾 · 𝐴 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ 𝑋 ↔ ( 𝐾 · 𝐴 ) ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) ) | |
| 67 | 16 14 66 | mp2an | ⊢ ( 0 ≤ 𝑋 ↔ ( 𝐾 · 𝐴 ) ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) |
| 68 | 65 67 | mpbi | ⊢ ( 𝐾 · 𝐴 ) ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) |
| 69 | 15 16 49 | letri | ⊢ ( ( 𝐴 ≤ ( 𝐾 · 𝐴 ) ∧ ( 𝐾 · 𝐴 ) ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) → 𝐴 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) |
| 70 | 64 68 69 | sylancl | ⊢ ( 0 < 𝐾 → 𝐴 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ) |
| 71 | 15 49 | lenlti | ⊢ ( 𝐴 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ↔ ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 𝐴 ) |
| 72 | 70 71 | sylib | ⊢ ( 0 < 𝐾 → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 𝐴 ) |
| 73 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ↔ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ℤ ∧ 0 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∧ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 𝐴 ) ) ) | |
| 74 | 7 8 73 | mp2an | ⊢ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ↔ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ℤ ∧ 0 ≤ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∧ ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 𝐴 ) ) |
| 75 | 74 | simp3bi | ⊢ ( ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) → ( 𝑋 + ( 𝐾 · 𝐴 ) ) < 𝐴 ) |
| 76 | 72 75 | nsyl | ⊢ ( 0 < 𝐾 → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ) |
| 77 | 56 76 | jaoi | ⊢ ( ( 𝐾 < 0 ∨ 0 < 𝐾 ) → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ) |
| 78 | 6 77 | sylbi | ⊢ ( 𝐾 ≠ 0 → ¬ ( 𝑋 + ( 𝐾 · 𝐴 ) ) ∈ ( 0 ... ( 𝐴 − 1 ) ) ) |