This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem6.1 | |- A e. NN |
|
| divalglem6.2 | |- X e. ( 0 ... ( A - 1 ) ) |
||
| divalglem6.3 | |- K e. ZZ |
||
| Assertion | divalglem6 | |- ( K =/= 0 -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem6.1 | |- A e. NN |
|
| 2 | divalglem6.2 | |- X e. ( 0 ... ( A - 1 ) ) |
|
| 3 | divalglem6.3 | |- K e. ZZ |
|
| 4 | 3 | zrei | |- K e. RR |
| 5 | 0re | |- 0 e. RR |
|
| 6 | 4 5 | lttri2i | |- ( K =/= 0 <-> ( K < 0 \/ 0 < K ) ) |
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | 1 | nnzi | |- A e. ZZ |
| 9 | elfzm11 | |- ( ( 0 e. ZZ /\ A e. ZZ ) -> ( X e. ( 0 ... ( A - 1 ) ) <-> ( X e. ZZ /\ 0 <_ X /\ X < A ) ) ) |
|
| 10 | 7 8 9 | mp2an | |- ( X e. ( 0 ... ( A - 1 ) ) <-> ( X e. ZZ /\ 0 <_ X /\ X < A ) ) |
| 11 | 2 10 | mpbi | |- ( X e. ZZ /\ 0 <_ X /\ X < A ) |
| 12 | 11 | simp3i | |- X < A |
| 13 | 11 | simp1i | |- X e. ZZ |
| 14 | 13 | zrei | |- X e. RR |
| 15 | 1 | nnrei | |- A e. RR |
| 16 | 4 15 | remulcli | |- ( K x. A ) e. RR |
| 17 | 14 15 16 | ltadd1i | |- ( X < A <-> ( X + ( K x. A ) ) < ( A + ( K x. A ) ) ) |
| 18 | 12 17 | mpbi | |- ( X + ( K x. A ) ) < ( A + ( K x. A ) ) |
| 19 | 4 | renegcli | |- -u K e. RR |
| 20 | 1 | nnnn0i | |- A e. NN0 |
| 21 | 20 | nn0ge0i | |- 0 <_ A |
| 22 | lemulge12 | |- ( ( ( A e. RR /\ -u K e. RR ) /\ ( 0 <_ A /\ 1 <_ -u K ) ) -> A <_ ( -u K x. A ) ) |
|
| 23 | 22 | an4s | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( -u K e. RR /\ 1 <_ -u K ) ) -> A <_ ( -u K x. A ) ) |
| 24 | 15 21 23 | mpanl12 | |- ( ( -u K e. RR /\ 1 <_ -u K ) -> A <_ ( -u K x. A ) ) |
| 25 | 19 24 | mpan | |- ( 1 <_ -u K -> A <_ ( -u K x. A ) ) |
| 26 | lt0neg1 | |- ( K e. RR -> ( K < 0 <-> 0 < -u K ) ) |
|
| 27 | 4 26 | ax-mp | |- ( K < 0 <-> 0 < -u K ) |
| 28 | znegcl | |- ( K e. ZZ -> -u K e. ZZ ) |
|
| 29 | 3 28 | ax-mp | |- -u K e. ZZ |
| 30 | zltp1le | |- ( ( 0 e. ZZ /\ -u K e. ZZ ) -> ( 0 < -u K <-> ( 0 + 1 ) <_ -u K ) ) |
|
| 31 | 7 29 30 | mp2an | |- ( 0 < -u K <-> ( 0 + 1 ) <_ -u K ) |
| 32 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 33 | 32 | breq1i | |- ( ( 0 + 1 ) <_ -u K <-> 1 <_ -u K ) |
| 34 | 31 33 | bitri | |- ( 0 < -u K <-> 1 <_ -u K ) |
| 35 | 27 34 | bitri | |- ( K < 0 <-> 1 <_ -u K ) |
| 36 | 4 | recni | |- K e. CC |
| 37 | 15 | recni | |- A e. CC |
| 38 | 36 37 | mulneg1i | |- ( -u K x. A ) = -u ( K x. A ) |
| 39 | 38 | oveq2i | |- ( A - ( -u K x. A ) ) = ( A - -u ( K x. A ) ) |
| 40 | 16 | recni | |- ( K x. A ) e. CC |
| 41 | 37 40 | subnegi | |- ( A - -u ( K x. A ) ) = ( A + ( K x. A ) ) |
| 42 | 39 41 | eqtri | |- ( A - ( -u K x. A ) ) = ( A + ( K x. A ) ) |
| 43 | 42 | breq1i | |- ( ( A - ( -u K x. A ) ) <_ 0 <-> ( A + ( K x. A ) ) <_ 0 ) |
| 44 | 19 15 | remulcli | |- ( -u K x. A ) e. RR |
| 45 | suble0 | |- ( ( A e. RR /\ ( -u K x. A ) e. RR ) -> ( ( A - ( -u K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) ) |
|
| 46 | 15 44 45 | mp2an | |- ( ( A - ( -u K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) |
| 47 | 43 46 | bitr3i | |- ( ( A + ( K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) |
| 48 | 25 35 47 | 3imtr4i | |- ( K < 0 -> ( A + ( K x. A ) ) <_ 0 ) |
| 49 | 14 16 | readdcli | |- ( X + ( K x. A ) ) e. RR |
| 50 | 15 16 | readdcli | |- ( A + ( K x. A ) ) e. RR |
| 51 | 49 50 5 | ltletri | |- ( ( ( X + ( K x. A ) ) < ( A + ( K x. A ) ) /\ ( A + ( K x. A ) ) <_ 0 ) -> ( X + ( K x. A ) ) < 0 ) |
| 52 | 18 48 51 | sylancr | |- ( K < 0 -> ( X + ( K x. A ) ) < 0 ) |
| 53 | 49 5 | ltnlei | |- ( ( X + ( K x. A ) ) < 0 <-> -. 0 <_ ( X + ( K x. A ) ) ) |
| 54 | 52 53 | sylib | |- ( K < 0 -> -. 0 <_ ( X + ( K x. A ) ) ) |
| 55 | elfzle1 | |- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) -> 0 <_ ( X + ( K x. A ) ) ) |
|
| 56 | 54 55 | nsyl | |- ( K < 0 -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
| 57 | zltp1le | |- ( ( 0 e. ZZ /\ K e. ZZ ) -> ( 0 < K <-> ( 0 + 1 ) <_ K ) ) |
|
| 58 | 7 3 57 | mp2an | |- ( 0 < K <-> ( 0 + 1 ) <_ K ) |
| 59 | 32 | breq1i | |- ( ( 0 + 1 ) <_ K <-> 1 <_ K ) |
| 60 | 58 59 | bitri | |- ( 0 < K <-> 1 <_ K ) |
| 61 | lemulge12 | |- ( ( ( A e. RR /\ K e. RR ) /\ ( 0 <_ A /\ 1 <_ K ) ) -> A <_ ( K x. A ) ) |
|
| 62 | 15 4 61 | mpanl12 | |- ( ( 0 <_ A /\ 1 <_ K ) -> A <_ ( K x. A ) ) |
| 63 | 21 62 | mpan | |- ( 1 <_ K -> A <_ ( K x. A ) ) |
| 64 | 60 63 | sylbi | |- ( 0 < K -> A <_ ( K x. A ) ) |
| 65 | 11 | simp2i | |- 0 <_ X |
| 66 | addge02 | |- ( ( ( K x. A ) e. RR /\ X e. RR ) -> ( 0 <_ X <-> ( K x. A ) <_ ( X + ( K x. A ) ) ) ) |
|
| 67 | 16 14 66 | mp2an | |- ( 0 <_ X <-> ( K x. A ) <_ ( X + ( K x. A ) ) ) |
| 68 | 65 67 | mpbi | |- ( K x. A ) <_ ( X + ( K x. A ) ) |
| 69 | 15 16 49 | letri | |- ( ( A <_ ( K x. A ) /\ ( K x. A ) <_ ( X + ( K x. A ) ) ) -> A <_ ( X + ( K x. A ) ) ) |
| 70 | 64 68 69 | sylancl | |- ( 0 < K -> A <_ ( X + ( K x. A ) ) ) |
| 71 | 15 49 | lenlti | |- ( A <_ ( X + ( K x. A ) ) <-> -. ( X + ( K x. A ) ) < A ) |
| 72 | 70 71 | sylib | |- ( 0 < K -> -. ( X + ( K x. A ) ) < A ) |
| 73 | elfzm11 | |- ( ( 0 e. ZZ /\ A e. ZZ ) -> ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) <-> ( ( X + ( K x. A ) ) e. ZZ /\ 0 <_ ( X + ( K x. A ) ) /\ ( X + ( K x. A ) ) < A ) ) ) |
|
| 74 | 7 8 73 | mp2an | |- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) <-> ( ( X + ( K x. A ) ) e. ZZ /\ 0 <_ ( X + ( K x. A ) ) /\ ( X + ( K x. A ) ) < A ) ) |
| 75 | 74 | simp3bi | |- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) -> ( X + ( K x. A ) ) < A ) |
| 76 | 72 75 | nsyl | |- ( 0 < K -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
| 77 | 56 76 | jaoi | |- ( ( K < 0 \/ 0 < K ) -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
| 78 | 6 77 | sylbi | |- ( K =/= 0 -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |