This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrlem4pr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝐵 ∈ P ) | |
| 2 | simprlr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 3 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ Q ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑦 ∈ Q ) |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → 𝐴 ∈ P ) | |
| 6 | simprl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑓 ∈ 𝐴 ) | |
| 7 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ Q ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑓 ∈ Q ) |
| 9 | simpl3 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝐶 ∈ P ) | |
| 10 | simprrr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑧 ∈ 𝐶 ) | |
| 11 | elprnq | ⊢ ( ( 𝐶 ∈ P ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ Q ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑧 ∈ Q ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | vex | ⊢ 𝑓 ∈ V | |
| 15 | ltmnq | ⊢ ( 𝑢 ∈ Q → ( 𝑤 <Q 𝑣 ↔ ( 𝑢 ·Q 𝑤 ) <Q ( 𝑢 ·Q 𝑣 ) ) ) | |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | mulcomnq | ⊢ ( 𝑤 ·Q 𝑣 ) = ( 𝑣 ·Q 𝑤 ) | |
| 18 | 13 14 15 16 17 | caovord2 | ⊢ ( 𝑦 ∈ Q → ( 𝑥 <Q 𝑓 ↔ ( 𝑥 ·Q 𝑦 ) <Q ( 𝑓 ·Q 𝑦 ) ) ) |
| 19 | mulclnq | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑓 ·Q 𝑧 ) ∈ Q ) | |
| 20 | ovex | ⊢ ( 𝑥 ·Q 𝑦 ) ∈ V | |
| 21 | ovex | ⊢ ( 𝑓 ·Q 𝑦 ) ∈ V | |
| 22 | ltanq | ⊢ ( 𝑢 ∈ Q → ( 𝑤 <Q 𝑣 ↔ ( 𝑢 +Q 𝑤 ) <Q ( 𝑢 +Q 𝑣 ) ) ) | |
| 23 | ovex | ⊢ ( 𝑓 ·Q 𝑧 ) ∈ V | |
| 24 | addcomnq | ⊢ ( 𝑤 +Q 𝑣 ) = ( 𝑣 +Q 𝑤 ) | |
| 25 | 20 21 22 23 24 | caovord2 | ⊢ ( ( 𝑓 ·Q 𝑧 ) ∈ Q → ( ( 𝑥 ·Q 𝑦 ) <Q ( 𝑓 ·Q 𝑦 ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 26 | 19 25 | syl | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑧 ∈ Q ) → ( ( 𝑥 ·Q 𝑦 ) <Q ( 𝑓 ·Q 𝑦 ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 27 | 18 26 | sylan9bb | ⊢ ( ( 𝑦 ∈ Q ∧ ( 𝑓 ∈ Q ∧ 𝑧 ∈ Q ) ) → ( 𝑥 <Q 𝑓 ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 28 | 4 8 12 27 | syl12anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑥 <Q 𝑓 ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 29 | simpl1 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝐴 ∈ P ) | |
| 30 | addclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) | |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
| 33 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ∈ P ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ∈ P ) |
| 35 | distrnq | ⊢ ( 𝑓 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) | |
| 36 | simprrl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑓 ∈ 𝐴 ) | |
| 37 | df-plp | ⊢ +P = ( 𝑢 ∈ P , 𝑣 ∈ P ↦ { 𝑤 ∣ ∃ 𝑔 ∈ 𝑢 ∃ ℎ ∈ 𝑣 𝑤 = ( 𝑔 +Q ℎ ) } ) | |
| 38 | addclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) | |
| 39 | 37 38 | genpprecl | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) ) |
| 40 | 39 | imp | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) |
| 41 | 1 9 2 10 40 | syl22anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) |
| 42 | df-mp | ⊢ ·P = ( 𝑢 ∈ P , 𝑣 ∈ P ↦ { 𝑤 ∣ ∃ 𝑔 ∈ 𝑢 ∃ ℎ ∈ 𝑣 𝑤 = ( 𝑔 ·Q ℎ ) } ) | |
| 43 | mulclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 ·Q ℎ ) ∈ Q ) | |
| 44 | 42 43 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) → ( 𝑓 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) ∧ ( 𝑓 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) ) → ( 𝑓 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 46 | 29 32 36 41 45 | syl22anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑓 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 47 | 35 46 | eqeltrrid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 48 | prcdnq | ⊢ ( ( ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ∈ P ∧ ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) → ( ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) | |
| 49 | 34 47 48 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑓 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 50 | 28 49 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑥 <Q 𝑓 → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 51 | simpll | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐴 ) | |
| 52 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) | |
| 53 | 5 51 52 | syl2an | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑥 ∈ Q ) |
| 54 | vex | ⊢ 𝑧 ∈ V | |
| 55 | 14 13 15 54 17 | caovord2 | ⊢ ( 𝑧 ∈ Q → ( 𝑓 <Q 𝑥 ↔ ( 𝑓 ·Q 𝑧 ) <Q ( 𝑥 ·Q 𝑧 ) ) ) |
| 56 | mulclnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ·Q 𝑦 ) ∈ Q ) | |
| 57 | ltanq | ⊢ ( ( 𝑥 ·Q 𝑦 ) ∈ Q → ( ( 𝑓 ·Q 𝑧 ) <Q ( 𝑥 ·Q 𝑧 ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑓 ·Q 𝑧 ) <Q ( 𝑥 ·Q 𝑧 ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) ) |
| 59 | 55 58 | sylan9bbr | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑓 <Q 𝑥 ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) ) |
| 60 | 53 4 12 59 | syl21anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑓 <Q 𝑥 ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) ) |
| 61 | distrnq | ⊢ ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) | |
| 62 | simprll | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 63 | 42 43 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) → ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ ( 𝐵 +P 𝐶 ) ) ) → ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 65 | 29 32 62 41 64 | syl22anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 66 | 61 65 | eqeltrrid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| 67 | prcdnq | ⊢ ( ( ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ∈ P ∧ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) → ( ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) | |
| 68 | 34 66 67 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) <Q ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 69 | 60 68 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑓 <Q 𝑥 → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 70 | ltsonq | ⊢ <Q Or Q | |
| 71 | sotrieq | ⊢ ( ( <Q Or Q ∧ ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) ) → ( 𝑥 = 𝑓 ↔ ¬ ( 𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥 ) ) ) | |
| 72 | 70 71 | mpan | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) → ( 𝑥 = 𝑓 ↔ ¬ ( 𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥 ) ) ) |
| 73 | 53 8 72 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑥 = 𝑓 ↔ ¬ ( 𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥 ) ) ) |
| 74 | oveq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 ·Q 𝑧 ) = ( 𝑓 ·Q 𝑧 ) ) | |
| 75 | 74 | oveq2d | ⊢ ( 𝑥 = 𝑓 → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) |
| 76 | 61 75 | eqtrid | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) |
| 77 | 76 | eleq1d | ⊢ ( 𝑥 = 𝑓 → ( ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 78 | 65 77 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( 𝑥 = 𝑓 → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 79 | 73 78 | sylbird | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ¬ ( 𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥 ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 80 | 50 69 79 | ecase3d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |