This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrlem5pr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
| 3 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) | |
| 4 | df-plp | ⊢ +P = ( 𝑥 ∈ P , 𝑦 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑥 ∃ ℎ ∈ 𝑦 𝑓 = ( 𝑔 +Q ℎ ) } ) | |
| 5 | addclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) | |
| 6 | 4 5 | genpelv | ⊢ ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) ) |
| 7 | 2 3 6 | 3imp3i2an | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) ) |
| 8 | df-mp | ⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑣 𝑥 = ( 𝑔 ·Q ℎ ) } ) | |
| 9 | mulclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 ·Q ℎ ) ∈ Q ) | |
| 10 | 8 9 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) |
| 12 | 11 | anbi2d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) ↔ ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 13 | df-mp | ⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑣 𝑓 = ( 𝑔 ·Q ℎ ) } ) | |
| 14 | 13 9 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) ) |
| 16 | distrlem4pr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) | |
| 17 | oveq12 | ⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑣 +Q 𝑢 ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) | |
| 18 | 17 | eqeq2d | ⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) ↔ 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) ) |
| 19 | eleq1 | ⊢ ( 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) | |
| 20 | 18 19 | biimtrdi | ⊢ ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 21 | 20 | imp | ⊢ ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 22 | 16 21 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) → ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 23 | 22 | exp4b | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 24 | 23 | com3l | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 25 | 24 | exp4b | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) ) |
| 26 | 25 | com23 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) ) |
| 27 | 26 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) |
| 28 | 27 | rexlimdvv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 29 | 28 | com3r | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 30 | 15 29 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) |
| 31 | 30 | impd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 32 | 12 31 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) |
| 33 | 32 | rexlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 34 | 7 33 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) |
| 35 | 34 | ssrdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) |