This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that B ( y ) and C ( x ) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016) (Proof shortened by JJ, 27-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjxiun | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiu1 | ⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 𝐵 | |
| 2 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
| 3 | 1 2 | nfdisjw | ⊢ Ⅎ 𝑦 Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 |
| 4 | disjss1 | ⊢ ( 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) | |
| 5 | ssiun2 | ⊢ ( 𝑦 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) | |
| 6 | 4 5 | syl11 | ⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ( 𝑦 ∈ 𝐴 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 7 | 3 6 | ralrimi | ⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ) |
| 8 | 7 | a1i | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 9 | simplr | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) | |
| 10 | ssiun2 | ⊢ ( 𝑢 ∈ 𝐴 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) | |
| 11 | nfcv | ⊢ Ⅎ 𝑢 𝐵 | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 | |
| 13 | csbeq1a | ⊢ ( 𝑦 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) | |
| 14 | 11 12 13 | cbviun | ⊢ ∪ 𝑦 ∈ 𝐴 𝐵 = ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 |
| 15 | 10 14 | sseqtrrdi | ⊢ ( 𝑢 ∈ 𝐴 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 17 | 16 | ad2antrl | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 18 | csbeq1 | ⊢ ( 𝑢 = 𝑣 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) | |
| 19 | 18 | sseq1d | ⊢ ( 𝑢 = 𝑣 → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) ) |
| 20 | 19 15 | vtoclga | ⊢ ( 𝑣 ∈ 𝐴 → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 22 | 21 | ad2antrl | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
| 23 | 11 12 13 | cbvdisj | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 ↔ Disj 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
| 24 | 18 | disjor | ⊢ ( Disj 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
| 25 | 23 24 | sylbb | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
| 26 | rsp2 | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) ) |
| 28 | 27 | imp | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
| 29 | 28 | ord | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
| 30 | 29 | impr | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) |
| 31 | 30 | adantlr | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) |
| 32 | disjiun | ⊢ ( ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ∧ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) | |
| 33 | 9 17 22 31 32 | syl13anc | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
| 34 | 33 | expr | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
| 35 | 34 | orrd | ⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
| 36 | 35 | ralrimivva | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
| 37 | 18 | iuneq1d | ⊢ ( 𝑢 = 𝑣 → ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 38 | 37 | disjor | ⊢ ( Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
| 39 | 36 38 | sylibr | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 40 | nfcv | ⊢ Ⅎ 𝑢 ∪ 𝑥 ∈ 𝐵 𝐶 | |
| 41 | 12 2 | nfiun | ⊢ Ⅎ 𝑦 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 |
| 42 | 13 | iuneq1d | ⊢ ( 𝑦 = 𝑢 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 43 | 40 41 42 | cbvdisj | ⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 44 | 39 43 | sylibr | ⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| 45 | 44 | ex | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
| 46 | 8 45 | jcad | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) ) |
| 47 | 14 | eleq2i | ⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ 𝑟 ∈ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
| 48 | eliun | ⊢ ( 𝑟 ∈ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ↔ ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) | |
| 49 | 47 48 | bitri | ⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
| 50 | nfcv | ⊢ Ⅎ 𝑣 𝐵 | |
| 51 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 | |
| 52 | csbeq1a | ⊢ ( 𝑦 = 𝑣 → 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) | |
| 53 | 50 51 52 | cbviun | ⊢ ∪ 𝑦 ∈ 𝐴 𝐵 = ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 |
| 54 | 53 | eleq2i | ⊢ ( 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ 𝑠 ∈ ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
| 55 | eliun | ⊢ ( 𝑠 ∈ ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ↔ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) | |
| 56 | 54 55 | bitri | ⊢ ( 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
| 57 | 49 56 | anbi12i | ⊢ ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) |
| 58 | reeanv | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) | |
| 59 | 57 58 | bitr4i | ⊢ ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) |
| 60 | simplrr | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ¬ 𝑟 = 𝑠 ) | |
| 61 | 12 2 | nfdisjw | ⊢ Ⅎ 𝑦 Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 |
| 62 | 13 | disjeq1d | ⊢ ( 𝑦 = 𝑢 → ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
| 63 | 61 62 | rspc | ⊢ ( 𝑢 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
| 64 | 63 | impcom | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ 𝑢 ∈ 𝐴 ) → Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 65 | disjors | ⊢ ( Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ↔ ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) | |
| 66 | 64 65 | sylib | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ 𝑢 ∈ 𝐴 ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 67 | 66 | ad2ant2r | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 69 | simplrl | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) | |
| 70 | simplrr | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) | |
| 71 | 18 | adantl | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
| 72 | 70 71 | eleqtrrd | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
| 73 | 69 72 | jca | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) ) |
| 74 | rsp2 | ⊢ ( ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) → ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) | |
| 75 | 74 | imp | ⊢ ( ( ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 76 | 68 73 75 | syl2an2r | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 77 | 76 | adantlrr | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 78 | 77 | ord | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( ¬ 𝑟 = 𝑠 → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 79 | 60 78 | mpd | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 80 | ssiun2 | ⊢ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 → ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ) | |
| 81 | nfcv | ⊢ Ⅎ 𝑟 𝐶 | |
| 82 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 | |
| 83 | csbeq1a | ⊢ ( 𝑥 = 𝑟 → 𝐶 = ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ) | |
| 84 | 81 82 83 | cbviun | ⊢ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 |
| 85 | 80 84 | sseqtrrdi | ⊢ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 → ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 86 | ssiun2 | ⊢ ( 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 → ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) | |
| 87 | nfcv | ⊢ Ⅎ 𝑠 𝐶 | |
| 88 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 | |
| 89 | csbeq1a | ⊢ ( 𝑥 = 𝑠 → 𝐶 = ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) | |
| 90 | 87 88 89 | cbviun | ⊢ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 |
| 91 | 86 90 | sseqtrrdi | ⊢ ( 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 → ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 92 | ss2in | ⊢ ( ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∧ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) | |
| 93 | 85 91 92 | syl2an | ⊢ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
| 94 | 93 | ad2antrl | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
| 95 | nfcv | ⊢ Ⅎ 𝑧 ∪ 𝑥 ∈ 𝐵 𝐶 | |
| 96 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐵 | |
| 97 | 96 2 | nfiun | ⊢ Ⅎ 𝑦 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 |
| 98 | csbeq1a | ⊢ ( 𝑦 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑦 ⦌ 𝐵 ) | |
| 99 | 98 | iuneq1d | ⊢ ( 𝑦 = 𝑧 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 100 | 95 97 99 | cbvdisj | ⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 101 | 100 | biimpi | ⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 → Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 102 | 101 | ad3antlr | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 103 | simplr | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) | |
| 104 | id | ⊢ ( 𝑢 ≠ 𝑣 → 𝑢 ≠ 𝑣 ) | |
| 105 | csbeq1 | ⊢ ( 𝑧 = 𝑢 → ⦋ 𝑧 / 𝑦 ⦌ 𝐵 = ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) | |
| 106 | 105 | iuneq1d | ⊢ ( 𝑧 = 𝑢 → ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 107 | csbeq1 | ⊢ ( 𝑧 = 𝑣 → ⦋ 𝑧 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) | |
| 108 | 107 | iuneq1d | ⊢ ( 𝑧 = 𝑣 → ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
| 109 | 106 108 | disji2 | ⊢ ( ( Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑢 ≠ 𝑣 ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
| 110 | 102 103 104 109 | syl2an3an | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
| 111 | sseq0 | ⊢ ( ( ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ∧ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) | |
| 112 | 94 110 111 | syl2an2r | ⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 113 | 79 112 | pm2.61dane | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 114 | 113 | expr | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ( ¬ 𝑟 = 𝑠 → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 115 | 114 | orrd | ⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 116 | 115 | ex | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 117 | 116 | rexlimdvva | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 118 | 59 117 | biimtrid | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 119 | 118 | ralrimivv | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ∀ 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 120 | disjors | ⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ∀ 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) | |
| 121 | 119 120 | sylibr | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) |
| 122 | 46 121 | impbid1 | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) ) |