This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | disjeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | disjeq1d | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | disjeq1 | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |