This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discr.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| discr.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| discr.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| discr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) | ||
| Assertion | discr | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discr.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | discr.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | discr.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | discr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ ) |
| 6 | resqcl | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) ∈ ℝ ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 9 | 4re | ⊢ 4 ∈ ℝ | |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐶 ∈ ℝ ) |
| 12 | 10 11 | remulcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 13 | remulcl | ⊢ ( ( 4 ∈ ℝ ∧ ( 𝐴 · 𝐶 ) ∈ ℝ ) → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℝ ) | |
| 14 | 9 12 13 | sylancr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 16 | 4pos | ⊢ 0 < 4 | |
| 17 | 9 16 | elrpii | ⊢ 4 ∈ ℝ+ |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 19 | 10 18 | elrpd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 20 | rpmulcl | ⊢ ( ( 4 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 4 · 𝐴 ) ∈ ℝ+ ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · 𝐴 ) ∈ ℝ+ ) |
| 22 | 21 | rpcnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · 𝐴 ) ∈ ℂ ) |
| 23 | 21 | rpne0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · 𝐴 ) ≠ 0 ) |
| 24 | 8 15 22 23 | divsubdird | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) / ( 4 · 𝐴 ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 4 · ( 𝐴 · 𝐶 ) ) / ( 4 · 𝐴 ) ) ) ) |
| 25 | 12 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 26 | 10 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 27 | 4cn | ⊢ 4 ∈ ℂ | |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 4 ∈ ℂ ) |
| 29 | 19 | rpne0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 30 | 4ne0 | ⊢ 4 ≠ 0 | |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 4 ≠ 0 ) |
| 32 | 25 26 28 29 31 | divcan5d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 4 · ( 𝐴 · 𝐶 ) ) / ( 4 · 𝐴 ) ) = ( ( 𝐴 · 𝐶 ) / 𝐴 ) ) |
| 33 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐶 ∈ ℂ ) |
| 34 | 33 26 29 | divcan3d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · 𝐶 ) / 𝐴 ) = 𝐶 ) |
| 35 | 32 34 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 4 · ( 𝐴 · 𝐶 ) ) / ( 4 · 𝐴 ) ) = 𝐶 ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 4 · ( 𝐴 · 𝐶 ) ) / ( 4 · 𝐴 ) ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − 𝐶 ) ) |
| 37 | 24 36 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) / ( 4 · 𝐴 ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − 𝐶 ) ) |
| 38 | 7 21 | rerpdivcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ∈ ℂ ) |
| 40 | 39 | 2timesd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 2 · ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) ) |
| 41 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 42 | 41 | oveq1i | ⊢ ( ( 2 · 2 ) · 𝐴 ) = ( 4 · 𝐴 ) |
| 43 | 2cnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 2 ∈ ℂ ) | |
| 44 | 43 43 26 | mulassd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · 2 ) · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) ) |
| 45 | 42 44 | eqtr3id | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · ( 𝐵 ↑ 2 ) ) / ( 4 · 𝐴 ) ) = ( ( 2 · ( 𝐵 ↑ 2 ) ) / ( 2 · ( 2 · 𝐴 ) ) ) ) |
| 47 | 43 8 22 23 | divassd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · ( 𝐵 ↑ 2 ) ) / ( 4 · 𝐴 ) ) = ( 2 · ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) ) |
| 48 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 49 | rpmulcl | ⊢ ( ( 2 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 2 · 𝐴 ) ∈ ℝ+ ) | |
| 50 | 48 19 49 | sylancr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 2 · 𝐴 ) ∈ ℝ+ ) |
| 51 | 50 | rpcnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 52 | 50 | rpne0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 2 · 𝐴 ) ≠ 0 ) |
| 53 | 2ne0 | ⊢ 2 ≠ 0 | |
| 54 | 53 | a1i | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 2 ≠ 0 ) |
| 55 | 8 51 43 52 54 | divcan5d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · ( 𝐵 ↑ 2 ) ) / ( 2 · ( 2 · 𝐴 ) ) ) = ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) |
| 56 | 46 47 55 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 2 · ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) = ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) |
| 57 | 40 56 | eqtr3d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) = ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) |
| 58 | oveq1 | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) | |
| 59 | 58 | oveq2d | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) ) |
| 60 | oveq2 | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) | |
| 61 | 59 60 | oveq12d | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) ) |
| 62 | 61 | oveq1d | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) = ( ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) + 𝐶 ) ) |
| 63 | 62 | breq2d | ⊢ ( 𝑥 = - ( 𝐵 / ( 2 · 𝐴 ) ) → ( 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ↔ 0 ≤ ( ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) + 𝐶 ) ) ) |
| 64 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 66 | 5 50 | rerpdivcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 / ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 67 | 66 | renegcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → - ( 𝐵 / ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 68 | 63 65 67 | rspcdva | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 ≤ ( ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) + 𝐶 ) ) |
| 69 | 66 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 / ( 2 · 𝐴 ) ) ∈ ℂ ) |
| 70 | sqneg | ⊢ ( ( 𝐵 / ( 2 · 𝐴 ) ) ∈ ℂ → ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) | |
| 71 | 69 70 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) |
| 72 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ∈ ℂ ) |
| 73 | sqdiv | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 2 · 𝐴 ) ∈ ℂ ∧ ( 2 · 𝐴 ) ≠ 0 ) → ( ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( ( 2 · 𝐴 ) ↑ 2 ) ) ) | |
| 74 | 72 51 52 73 | syl3anc | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( ( 2 · 𝐴 ) ↑ 2 ) ) ) |
| 75 | sqval | ⊢ ( ( 2 · 𝐴 ) ∈ ℂ → ( ( 2 · 𝐴 ) ↑ 2 ) = ( ( 2 · 𝐴 ) · ( 2 · 𝐴 ) ) ) | |
| 76 | 51 75 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · 𝐴 ) ↑ 2 ) = ( ( 2 · 𝐴 ) · ( 2 · 𝐴 ) ) ) |
| 77 | 51 43 26 | mulassd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 2 · 𝐴 ) · 2 ) · 𝐴 ) = ( ( 2 · 𝐴 ) · ( 2 · 𝐴 ) ) ) |
| 78 | 43 26 43 | mul32d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · 𝐴 ) · 2 ) = ( ( 2 · 2 ) · 𝐴 ) ) |
| 79 | 78 42 | eqtrdi | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · 𝐴 ) · 2 ) = ( 4 · 𝐴 ) ) |
| 80 | 79 | oveq1d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 2 · 𝐴 ) · 2 ) · 𝐴 ) = ( ( 4 · 𝐴 ) · 𝐴 ) ) |
| 81 | 76 77 80 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 2 · 𝐴 ) ↑ 2 ) = ( ( 4 · 𝐴 ) · 𝐴 ) ) |
| 82 | 81 | oveq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( ( 2 · 𝐴 ) ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) / ( ( 4 · 𝐴 ) · 𝐴 ) ) ) |
| 83 | 71 74 82 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( ( 4 · 𝐴 ) · 𝐴 ) ) ) |
| 84 | 8 22 26 23 29 | divdiv1d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) / 𝐴 ) = ( ( 𝐵 ↑ 2 ) / ( ( 4 · 𝐴 ) · 𝐴 ) ) ) |
| 85 | 83 84 | eqtr4d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) / 𝐴 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) = ( 𝐴 · ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) / 𝐴 ) ) ) |
| 87 | 39 26 29 | divcan2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) / 𝐴 ) ) = ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) |
| 88 | 86 87 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) |
| 89 | 72 69 | mulneg2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) = - ( 𝐵 · ( 𝐵 / ( 2 · 𝐴 ) ) ) ) |
| 90 | sqval | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) | |
| 91 | 72 90 | syl | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 92 | 91 | oveq1d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) = ( ( 𝐵 · 𝐵 ) / ( 2 · 𝐴 ) ) ) |
| 93 | 72 72 51 52 | divassd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 · 𝐵 ) / ( 2 · 𝐴 ) ) = ( 𝐵 · ( 𝐵 / ( 2 · 𝐴 ) ) ) ) |
| 94 | 92 93 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) = ( 𝐵 · ( 𝐵 / ( 2 · 𝐴 ) ) ) ) |
| 95 | 94 | negeqd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → - ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) = - ( 𝐵 · ( 𝐵 / ( 2 · 𝐴 ) ) ) ) |
| 96 | 89 95 | eqtr4d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) = - ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) |
| 97 | 88 96 | oveq12d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + - ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ) |
| 98 | 7 50 | rerpdivcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 99 | 98 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ∈ ℂ ) |
| 100 | 39 99 | negsubd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + - ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ) |
| 101 | 97 100 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ) |
| 102 | 101 | oveq1d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) + 𝐶 ) = ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) + 𝐶 ) ) |
| 103 | 39 33 99 | addsubd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) = ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) + 𝐶 ) ) |
| 104 | 102 103 | eqtr4d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐴 · ( - ( 𝐵 / ( 2 · 𝐴 ) ) ↑ 2 ) ) + ( 𝐵 · - ( 𝐵 / ( 2 · 𝐴 ) ) ) ) + 𝐶 ) = ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ) |
| 105 | 68 104 | breqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 ≤ ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ) |
| 106 | 38 11 | readdcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) ∈ ℝ ) |
| 107 | 106 98 | subge0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 0 ≤ ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) − ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ) ↔ ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ≤ ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) ) ) |
| 108 | 105 107 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 2 · 𝐴 ) ) ≤ ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) ) |
| 109 | 57 108 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) ≤ ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) ) |
| 110 | 38 11 38 | leadd2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ≤ 𝐶 ↔ ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ) ≤ ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) + 𝐶 ) ) ) |
| 111 | 109 110 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ≤ 𝐶 ) |
| 112 | 38 11 | suble0d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − 𝐶 ) ≤ 0 ↔ ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) ≤ 𝐶 ) ) |
| 113 | 111 112 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) / ( 4 · 𝐴 ) ) − 𝐶 ) ≤ 0 ) |
| 114 | 37 113 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) / ( 4 · 𝐴 ) ) ≤ 0 ) |
| 115 | 7 14 | resubcld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ∈ ℝ ) |
| 116 | 0red | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 ∈ ℝ ) | |
| 117 | 115 116 21 | ledivmuld | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) / ( 4 · 𝐴 ) ) ≤ 0 ↔ ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ ( ( 4 · 𝐴 ) · 0 ) ) ) |
| 118 | 114 117 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ ( ( 4 · 𝐴 ) · 0 ) ) |
| 119 | 22 | mul01d | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 4 · 𝐴 ) · 0 ) = 0 ) |
| 120 | 118 119 | breqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ) |
| 121 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 𝐶 ∈ ℝ ) |
| 122 | 121 | ltp1d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 𝐶 < ( 𝐶 + 1 ) ) |
| 123 | peano2re | ⊢ ( 𝐶 ∈ ℝ → ( 𝐶 + 1 ) ∈ ℝ ) | |
| 124 | 121 123 | syl | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 + 1 ) ∈ ℝ ) |
| 125 | 121 124 | ltnegd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 < ( 𝐶 + 1 ) ↔ - ( 𝐶 + 1 ) < - 𝐶 ) ) |
| 126 | 122 125 | mpbid | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → - ( 𝐶 + 1 ) < - 𝐶 ) |
| 127 | df-neg | ⊢ - 𝐶 = ( 0 − 𝐶 ) | |
| 128 | 126 127 | breqtrdi | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → - ( 𝐶 + 1 ) < ( 0 − 𝐶 ) ) |
| 129 | 124 | renegcld | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → - ( 𝐶 + 1 ) ∈ ℝ ) |
| 130 | 0red | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 0 ∈ ℝ ) | |
| 131 | 129 121 130 | ltaddsubd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ↔ - ( 𝐶 + 1 ) < ( 0 − 𝐶 ) ) ) |
| 132 | 128 131 | mpbird | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) |
| 133 | 132 | expr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 𝐵 ≠ 0 → ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) ) |
| 134 | oveq1 | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( 𝑥 ↑ 2 ) = ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) | |
| 135 | 134 | oveq2d | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) ) |
| 136 | oveq2 | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) | |
| 137 | 135 136 | oveq12d | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) ) |
| 138 | 137 | oveq1d | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) = ( ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) + 𝐶 ) ) |
| 139 | 138 | breq2d | ⊢ ( 𝑥 = ( - ( 𝐶 + 1 ) / 𝐵 ) → ( 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ↔ 0 ≤ ( ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) + 𝐶 ) ) ) |
| 140 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 141 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℝ ) |
| 142 | simprr | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 143 | 129 141 142 | redivcld | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( - ( 𝐶 + 1 ) / 𝐵 ) ∈ ℝ ) |
| 144 | 139 140 143 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 0 ≤ ( ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) + 𝐶 ) ) |
| 145 | simprl | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 0 = 𝐴 ) | |
| 146 | 145 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 0 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) = ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) ) |
| 147 | 143 | recnd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( - ( 𝐶 + 1 ) / 𝐵 ) ∈ ℂ ) |
| 148 | sqcl | ⊢ ( ( - ( 𝐶 + 1 ) / 𝐵 ) ∈ ℂ → ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ∈ ℂ ) | |
| 149 | 147 148 | syl | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 150 | 149 | mul02d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 0 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) = 0 ) |
| 151 | 146 150 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) = 0 ) |
| 152 | 129 | recnd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → - ( 𝐶 + 1 ) ∈ ℂ ) |
| 153 | 141 | recnd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 154 | 152 153 142 | divcan2d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) = - ( 𝐶 + 1 ) ) |
| 155 | 151 154 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) = ( 0 + - ( 𝐶 + 1 ) ) ) |
| 156 | 152 | addlidd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 0 + - ( 𝐶 + 1 ) ) = - ( 𝐶 + 1 ) ) |
| 157 | 155 156 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) = - ( 𝐶 + 1 ) ) |
| 158 | 157 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐴 · ( ( - ( 𝐶 + 1 ) / 𝐵 ) ↑ 2 ) ) + ( 𝐵 · ( - ( 𝐶 + 1 ) / 𝐵 ) ) ) + 𝐶 ) = ( - ( 𝐶 + 1 ) + 𝐶 ) ) |
| 159 | 144 158 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → 0 ≤ ( - ( 𝐶 + 1 ) + 𝐶 ) ) |
| 160 | 0re | ⊢ 0 ∈ ℝ | |
| 161 | 129 121 | readdcld | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( - ( 𝐶 + 1 ) + 𝐶 ) ∈ ℝ ) |
| 162 | lenlt | ⊢ ( ( 0 ∈ ℝ ∧ ( - ( 𝐶 + 1 ) + 𝐶 ) ∈ ℝ ) → ( 0 ≤ ( - ( 𝐶 + 1 ) + 𝐶 ) ↔ ¬ ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) ) | |
| 163 | 160 161 162 | sylancr | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ( 0 ≤ ( - ( 𝐶 + 1 ) + 𝐶 ) ↔ ¬ ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) ) |
| 164 | 159 163 | mpbid | ⊢ ( ( 𝜑 ∧ ( 0 = 𝐴 ∧ 𝐵 ≠ 0 ) ) → ¬ ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) |
| 165 | 164 | expr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 𝐵 ≠ 0 → ¬ ( - ( 𝐶 + 1 ) + 𝐶 ) < 0 ) ) |
| 166 | 133 165 | pm2.65d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ¬ 𝐵 ≠ 0 ) |
| 167 | nne | ⊢ ( ¬ 𝐵 ≠ 0 ↔ 𝐵 = 0 ) | |
| 168 | 166 167 | sylib | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐵 = 0 ) |
| 169 | 168 | sq0id | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 𝐵 ↑ 2 ) = 0 ) |
| 170 | simpr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 = 𝐴 ) | |
| 171 | 170 | oveq1d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
| 172 | 3 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 173 | 172 | adantr | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐶 ∈ ℂ ) |
| 174 | 173 | mul02d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · 𝐶 ) = 0 ) |
| 175 | 171 174 | eqtr3d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 𝐴 · 𝐶 ) = 0 ) |
| 176 | 175 | oveq2d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 4 · ( 𝐴 · 𝐶 ) ) = ( 4 · 0 ) ) |
| 177 | 27 | mul01i | ⊢ ( 4 · 0 ) = 0 |
| 178 | 176 177 | eqtrdi | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 4 · ( 𝐴 · 𝐶 ) ) = 0 ) |
| 179 | 169 178 | oveq12d | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) = ( 0 − 0 ) ) |
| 180 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 181 | 0le0 | ⊢ 0 ≤ 0 | |
| 182 | 180 181 | eqbrtri | ⊢ ( 0 − 0 ) ≤ 0 |
| 183 | 179 182 | eqbrtrdi | ⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ) |
| 184 | eqid | ⊢ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) = if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) | |
| 185 | 1 2 3 4 184 | discr1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 186 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 187 | 160 1 186 | sylancr | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 188 | 185 187 | mpbid | ⊢ ( 𝜑 → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 189 | 120 183 188 | mpjaodan | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ) |