This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnngt1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | ⊢ ( 𝐵 ∈ ℤ ↔ ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) ) ) | |
| 2 | 2a1 | ⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) | |
| 3 | 2 | a1d | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
| 4 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 6 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 8 | simp1 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → - 𝐵 ∈ ℕ0 ) | |
| 9 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
| 11 | 10 | breq2d | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) |
| 12 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 13 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
| 15 | 14 | ancoms | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
| 16 | 12 | adantl | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 17 | nn0z | ⊢ ( - 𝐵 ∈ ℕ0 → - 𝐵 ∈ ℤ ) | |
| 18 | 17 | adantr | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → - 𝐵 ∈ ℤ ) |
| 19 | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) | |
| 20 | 19 | adantl | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 0 < 𝐴 ) |
| 21 | expgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ - 𝐵 ) ) | |
| 22 | 16 18 20 21 | syl3anc | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 0 < ( 𝐴 ↑ - 𝐵 ) ) |
| 23 | 15 22 | jca | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) ) |
| 24 | 23 | 3adant2 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) ) |
| 25 | reclt1 | ⊢ ( ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) |
| 27 | 12 | 3ad2ant3 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 28 | nnge1 | ⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) | |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ≤ 𝐴 ) |
| 30 | 27 8 29 | expge1d | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ≤ ( 𝐴 ↑ - 𝐵 ) ) |
| 31 | 1red | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ∈ ℝ ) | |
| 32 | 15 | 3adant2 | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
| 33 | 31 32 | lenltd | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 ≤ ( 𝐴 ↑ - 𝐵 ) ↔ ¬ ( 𝐴 ↑ - 𝐵 ) < 1 ) ) |
| 34 | pm2.21 | ⊢ ( ¬ ( 𝐴 ↑ - 𝐵 ) < 1 → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) | |
| 35 | 33 34 | biimtrdi | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 ≤ ( 𝐴 ↑ - 𝐵 ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) ) |
| 36 | 30 35 | mpd | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) |
| 37 | 26 36 | sylbird | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) → 𝐵 ∈ ℕ ) ) |
| 38 | 11 37 | sylbid | ⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) |
| 39 | 38 | 3exp | ⊢ ( - 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
| 40 | 3 39 | jaoi | ⊢ ( ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) |
| 42 | 1 41 | sylbi | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) |
| 43 | 42 | 3imp21 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |