This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discr.1 | |- ( ph -> A e. RR ) |
|
| discr.2 | |- ( ph -> B e. RR ) |
||
| discr.3 | |- ( ph -> C e. RR ) |
||
| discr.4 | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
||
| Assertion | discr | |- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discr.1 | |- ( ph -> A e. RR ) |
|
| 2 | discr.2 | |- ( ph -> B e. RR ) |
|
| 3 | discr.3 | |- ( ph -> C e. RR ) |
|
| 4 | discr.4 | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
|
| 5 | 2 | adantr | |- ( ( ph /\ 0 < A ) -> B e. RR ) |
| 6 | resqcl | |- ( B e. RR -> ( B ^ 2 ) e. RR ) |
|
| 7 | 5 6 | syl | |- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) e. RR ) |
| 8 | 7 | recnd | |- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) e. CC ) |
| 9 | 4re | |- 4 e. RR |
|
| 10 | 1 | adantr | |- ( ( ph /\ 0 < A ) -> A e. RR ) |
| 11 | 3 | adantr | |- ( ( ph /\ 0 < A ) -> C e. RR ) |
| 12 | 10 11 | remulcld | |- ( ( ph /\ 0 < A ) -> ( A x. C ) e. RR ) |
| 13 | remulcl | |- ( ( 4 e. RR /\ ( A x. C ) e. RR ) -> ( 4 x. ( A x. C ) ) e. RR ) |
|
| 14 | 9 12 13 | sylancr | |- ( ( ph /\ 0 < A ) -> ( 4 x. ( A x. C ) ) e. RR ) |
| 15 | 14 | recnd | |- ( ( ph /\ 0 < A ) -> ( 4 x. ( A x. C ) ) e. CC ) |
| 16 | 4pos | |- 0 < 4 |
|
| 17 | 9 16 | elrpii | |- 4 e. RR+ |
| 18 | simpr | |- ( ( ph /\ 0 < A ) -> 0 < A ) |
|
| 19 | 10 18 | elrpd | |- ( ( ph /\ 0 < A ) -> A e. RR+ ) |
| 20 | rpmulcl | |- ( ( 4 e. RR+ /\ A e. RR+ ) -> ( 4 x. A ) e. RR+ ) |
|
| 21 | 17 19 20 | sylancr | |- ( ( ph /\ 0 < A ) -> ( 4 x. A ) e. RR+ ) |
| 22 | 21 | rpcnd | |- ( ( ph /\ 0 < A ) -> ( 4 x. A ) e. CC ) |
| 23 | 21 | rpne0d | |- ( ( ph /\ 0 < A ) -> ( 4 x. A ) =/= 0 ) |
| 24 | 8 15 22 23 | divsubdird | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) ) ) |
| 25 | 12 | recnd | |- ( ( ph /\ 0 < A ) -> ( A x. C ) e. CC ) |
| 26 | 10 | recnd | |- ( ( ph /\ 0 < A ) -> A e. CC ) |
| 27 | 4cn | |- 4 e. CC |
|
| 28 | 27 | a1i | |- ( ( ph /\ 0 < A ) -> 4 e. CC ) |
| 29 | 19 | rpne0d | |- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
| 30 | 4ne0 | |- 4 =/= 0 |
|
| 31 | 30 | a1i | |- ( ( ph /\ 0 < A ) -> 4 =/= 0 ) |
| 32 | 25 26 28 29 31 | divcan5d | |- ( ( ph /\ 0 < A ) -> ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) = ( ( A x. C ) / A ) ) |
| 33 | 11 | recnd | |- ( ( ph /\ 0 < A ) -> C e. CC ) |
| 34 | 33 26 29 | divcan3d | |- ( ( ph /\ 0 < A ) -> ( ( A x. C ) / A ) = C ) |
| 35 | 32 34 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) = C ) |
| 36 | 35 | oveq2d | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( 4 x. ( A x. C ) ) / ( 4 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) ) |
| 37 | 24 36 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) ) |
| 38 | 7 21 | rerpdivcld | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) e. RR ) |
| 39 | 38 | recnd | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) e. CC ) |
| 40 | 39 | 2timesd | |- ( ( ph /\ 0 < A ) -> ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) ) |
| 41 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 42 | 41 | oveq1i | |- ( ( 2 x. 2 ) x. A ) = ( 4 x. A ) |
| 43 | 2cnd | |- ( ( ph /\ 0 < A ) -> 2 e. CC ) |
|
| 44 | 43 43 26 | mulassd | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) ) |
| 45 | 42 44 | eqtr3id | |- ( ( ph /\ 0 < A ) -> ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) ) |
| 46 | 45 | oveq2d | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 4 x. A ) ) = ( ( 2 x. ( B ^ 2 ) ) / ( 2 x. ( 2 x. A ) ) ) ) |
| 47 | 43 8 22 23 | divassd | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 4 x. A ) ) = ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) ) |
| 48 | 2rp | |- 2 e. RR+ |
|
| 49 | rpmulcl | |- ( ( 2 e. RR+ /\ A e. RR+ ) -> ( 2 x. A ) e. RR+ ) |
|
| 50 | 48 19 49 | sylancr | |- ( ( ph /\ 0 < A ) -> ( 2 x. A ) e. RR+ ) |
| 51 | 50 | rpcnd | |- ( ( ph /\ 0 < A ) -> ( 2 x. A ) e. CC ) |
| 52 | 50 | rpne0d | |- ( ( ph /\ 0 < A ) -> ( 2 x. A ) =/= 0 ) |
| 53 | 2ne0 | |- 2 =/= 0 |
|
| 54 | 53 | a1i | |- ( ( ph /\ 0 < A ) -> 2 =/= 0 ) |
| 55 | 8 51 43 52 54 | divcan5d | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. ( B ^ 2 ) ) / ( 2 x. ( 2 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 56 | 46 47 55 | 3eqtr3d | |- ( ( ph /\ 0 < A ) -> ( 2 x. ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 57 | 40 56 | eqtr3d | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) = ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 58 | oveq1 | |- ( x = -u ( B / ( 2 x. A ) ) -> ( x ^ 2 ) = ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) |
|
| 59 | 58 | oveq2d | |- ( x = -u ( B / ( 2 x. A ) ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) ) |
| 60 | oveq2 | |- ( x = -u ( B / ( 2 x. A ) ) -> ( B x. x ) = ( B x. -u ( B / ( 2 x. A ) ) ) ) |
|
| 61 | 59 60 | oveq12d | |- ( x = -u ( B / ( 2 x. A ) ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) ) |
| 62 | 61 | oveq1d | |- ( x = -u ( B / ( 2 x. A ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) |
| 63 | 62 | breq2d | |- ( x = -u ( B / ( 2 x. A ) ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) ) |
| 64 | 4 | ralrimiva | |- ( ph -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 65 | 64 | adantr | |- ( ( ph /\ 0 < A ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 66 | 5 50 | rerpdivcld | |- ( ( ph /\ 0 < A ) -> ( B / ( 2 x. A ) ) e. RR ) |
| 67 | 66 | renegcld | |- ( ( ph /\ 0 < A ) -> -u ( B / ( 2 x. A ) ) e. RR ) |
| 68 | 63 65 67 | rspcdva | |- ( ( ph /\ 0 < A ) -> 0 <_ ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) ) |
| 69 | 66 | recnd | |- ( ( ph /\ 0 < A ) -> ( B / ( 2 x. A ) ) e. CC ) |
| 70 | sqneg | |- ( ( B / ( 2 x. A ) ) e. CC -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
|
| 71 | 69 70 | syl | |- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 72 | 5 | recnd | |- ( ( ph /\ 0 < A ) -> B e. CC ) |
| 73 | sqdiv | |- ( ( B e. CC /\ ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) -> ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) ) |
|
| 74 | 72 51 52 73 | syl3anc | |- ( ( ph /\ 0 < A ) -> ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 75 | sqval | |- ( ( 2 x. A ) e. CC -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
|
| 76 | 51 75 | syl | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
| 77 | 51 43 26 | mulassd | |- ( ( ph /\ 0 < A ) -> ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
| 78 | 43 26 43 | mul32d | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) x. 2 ) = ( ( 2 x. 2 ) x. A ) ) |
| 79 | 78 42 | eqtrdi | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) x. 2 ) = ( 4 x. A ) ) |
| 80 | 79 | oveq1d | |- ( ( ph /\ 0 < A ) -> ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 4 x. A ) x. A ) ) |
| 81 | 76 77 80 | 3eqtr2d | |- ( ( ph /\ 0 < A ) -> ( ( 2 x. A ) ^ 2 ) = ( ( 4 x. A ) x. A ) ) |
| 82 | 81 | oveq2d | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 83 | 71 74 82 | 3eqtrd | |- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 84 | 8 22 26 23 29 | divdiv1d | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) = ( ( B ^ 2 ) / ( ( 4 x. A ) x. A ) ) ) |
| 85 | 83 84 | eqtr4d | |- ( ( ph /\ 0 < A ) -> ( -u ( B / ( 2 x. A ) ) ^ 2 ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) |
| 86 | 85 | oveq2d | |- ( ( ph /\ 0 < A ) -> ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) = ( A x. ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) ) |
| 87 | 39 26 29 | divcan2d | |- ( ( ph /\ 0 < A ) -> ( A x. ( ( ( B ^ 2 ) / ( 4 x. A ) ) / A ) ) = ( ( B ^ 2 ) / ( 4 x. A ) ) ) |
| 88 | 86 87 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( B ^ 2 ) / ( 4 x. A ) ) ) |
| 89 | 72 69 | mulneg2d | |- ( ( ph /\ 0 < A ) -> ( B x. -u ( B / ( 2 x. A ) ) ) = -u ( B x. ( B / ( 2 x. A ) ) ) ) |
| 90 | sqval | |- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
|
| 91 | 72 90 | syl | |- ( ( ph /\ 0 < A ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 92 | 91 | oveq1d | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) = ( ( B x. B ) / ( 2 x. A ) ) ) |
| 93 | 72 72 51 52 | divassd | |- ( ( ph /\ 0 < A ) -> ( ( B x. B ) / ( 2 x. A ) ) = ( B x. ( B / ( 2 x. A ) ) ) ) |
| 94 | 92 93 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) = ( B x. ( B / ( 2 x. A ) ) ) ) |
| 95 | 94 | negeqd | |- ( ( ph /\ 0 < A ) -> -u ( ( B ^ 2 ) / ( 2 x. A ) ) = -u ( B x. ( B / ( 2 x. A ) ) ) ) |
| 96 | 89 95 | eqtr4d | |- ( ( ph /\ 0 < A ) -> ( B x. -u ( B / ( 2 x. A ) ) ) = -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) |
| 97 | 88 96 | oveq12d | |- ( ( ph /\ 0 < A ) -> ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) + -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 98 | 7 50 | rerpdivcld | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) e. RR ) |
| 99 | 98 | recnd | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) e. CC ) |
| 100 | 39 99 | negsubd | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + -u ( ( B ^ 2 ) / ( 2 x. A ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 101 | 97 100 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) = ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 102 | 101 | oveq1d | |- ( ( ph /\ 0 < A ) -> ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) + C ) ) |
| 103 | 39 33 99 | addsubd | |- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) + C ) ) |
| 104 | 102 103 | eqtr4d | |- ( ( ph /\ 0 < A ) -> ( ( ( A x. ( -u ( B / ( 2 x. A ) ) ^ 2 ) ) + ( B x. -u ( B / ( 2 x. A ) ) ) ) + C ) = ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 105 | 68 104 | breqtrd | |- ( ( ph /\ 0 < A ) -> 0 <_ ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) ) |
| 106 | 38 11 | readdcld | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) e. RR ) |
| 107 | 106 98 | subge0d | |- ( ( ph /\ 0 < A ) -> ( 0 <_ ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) - ( ( B ^ 2 ) / ( 2 x. A ) ) ) <-> ( ( B ^ 2 ) / ( 2 x. A ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) ) |
| 108 | 105 107 | mpbid | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 2 x. A ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) |
| 109 | 57 108 | eqbrtrd | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) |
| 110 | 38 11 38 | leadd2d | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C <-> ( ( ( B ^ 2 ) / ( 4 x. A ) ) + ( ( B ^ 2 ) / ( 4 x. A ) ) ) <_ ( ( ( B ^ 2 ) / ( 4 x. A ) ) + C ) ) ) |
| 111 | 109 110 | mpbird | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C ) |
| 112 | 38 11 | suble0d | |- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) <_ 0 <-> ( ( B ^ 2 ) / ( 4 x. A ) ) <_ C ) ) |
| 113 | 111 112 | mpbird | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) / ( 4 x. A ) ) - C ) <_ 0 ) |
| 114 | 37 113 | eqbrtrd | |- ( ( ph /\ 0 < A ) -> ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) <_ 0 ) |
| 115 | 7 14 | resubcld | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) |
| 116 | 0red | |- ( ( ph /\ 0 < A ) -> 0 e. RR ) |
|
| 117 | 115 116 21 | ledivmuld | |- ( ( ph /\ 0 < A ) -> ( ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( 4 x. A ) ) <_ 0 <-> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ ( ( 4 x. A ) x. 0 ) ) ) |
| 118 | 114 117 | mpbid | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ ( ( 4 x. A ) x. 0 ) ) |
| 119 | 22 | mul01d | |- ( ( ph /\ 0 < A ) -> ( ( 4 x. A ) x. 0 ) = 0 ) |
| 120 | 118 119 | breqtrd | |- ( ( ph /\ 0 < A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| 121 | 3 | adantr | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> C e. RR ) |
| 122 | 121 | ltp1d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> C < ( C + 1 ) ) |
| 123 | peano2re | |- ( C e. RR -> ( C + 1 ) e. RR ) |
|
| 124 | 121 123 | syl | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( C + 1 ) e. RR ) |
| 125 | 121 124 | ltnegd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( C < ( C + 1 ) <-> -u ( C + 1 ) < -u C ) ) |
| 126 | 122 125 | mpbid | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) < -u C ) |
| 127 | df-neg | |- -u C = ( 0 - C ) |
|
| 128 | 126 127 | breqtrdi | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) < ( 0 - C ) ) |
| 129 | 124 | renegcld | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) e. RR ) |
| 130 | 0red | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 e. RR ) |
|
| 131 | 129 121 130 | ltaddsubd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( -u ( C + 1 ) + C ) < 0 <-> -u ( C + 1 ) < ( 0 - C ) ) ) |
| 132 | 128 131 | mpbird | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) + C ) < 0 ) |
| 133 | 132 | expr | |- ( ( ph /\ 0 = A ) -> ( B =/= 0 -> ( -u ( C + 1 ) + C ) < 0 ) ) |
| 134 | oveq1 | |- ( x = ( -u ( C + 1 ) / B ) -> ( x ^ 2 ) = ( ( -u ( C + 1 ) / B ) ^ 2 ) ) |
|
| 135 | 134 | oveq2d | |- ( x = ( -u ( C + 1 ) / B ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) ) |
| 136 | oveq2 | |- ( x = ( -u ( C + 1 ) / B ) -> ( B x. x ) = ( B x. ( -u ( C + 1 ) / B ) ) ) |
|
| 137 | 135 136 | oveq12d | |- ( x = ( -u ( C + 1 ) / B ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) ) |
| 138 | 137 | oveq1d | |- ( x = ( -u ( C + 1 ) / B ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) |
| 139 | 138 | breq2d | |- ( x = ( -u ( C + 1 ) / B ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) ) |
| 140 | 64 | adantr | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 141 | 2 | adantr | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B e. RR ) |
| 142 | simprr | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 143 | 129 141 142 | redivcld | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) / B ) e. RR ) |
| 144 | 139 140 143 | rspcdva | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 <_ ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) ) |
| 145 | simprl | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 = A ) |
|
| 146 | 145 | oveq1d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) ) |
| 147 | 143 | recnd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) / B ) e. CC ) |
| 148 | sqcl | |- ( ( -u ( C + 1 ) / B ) e. CC -> ( ( -u ( C + 1 ) / B ) ^ 2 ) e. CC ) |
|
| 149 | 147 148 | syl | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( -u ( C + 1 ) / B ) ^ 2 ) e. CC ) |
| 150 | 149 | mul02d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = 0 ) |
| 151 | 146 150 | eqtr3d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) = 0 ) |
| 152 | 129 | recnd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -u ( C + 1 ) e. CC ) |
| 153 | 141 | recnd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> B e. CC ) |
| 154 | 152 153 142 | divcan2d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( B x. ( -u ( C + 1 ) / B ) ) = -u ( C + 1 ) ) |
| 155 | 151 154 | oveq12d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) = ( 0 + -u ( C + 1 ) ) ) |
| 156 | 152 | addlidd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 + -u ( C + 1 ) ) = -u ( C + 1 ) ) |
| 157 | 155 156 | eqtrd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) = -u ( C + 1 ) ) |
| 158 | 157 | oveq1d | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( ( ( A x. ( ( -u ( C + 1 ) / B ) ^ 2 ) ) + ( B x. ( -u ( C + 1 ) / B ) ) ) + C ) = ( -u ( C + 1 ) + C ) ) |
| 159 | 144 158 | breqtrd | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> 0 <_ ( -u ( C + 1 ) + C ) ) |
| 160 | 0re | |- 0 e. RR |
|
| 161 | 129 121 | readdcld | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( -u ( C + 1 ) + C ) e. RR ) |
| 162 | lenlt | |- ( ( 0 e. RR /\ ( -u ( C + 1 ) + C ) e. RR ) -> ( 0 <_ ( -u ( C + 1 ) + C ) <-> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
|
| 163 | 160 161 162 | sylancr | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> ( 0 <_ ( -u ( C + 1 ) + C ) <-> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
| 164 | 159 163 | mpbid | |- ( ( ph /\ ( 0 = A /\ B =/= 0 ) ) -> -. ( -u ( C + 1 ) + C ) < 0 ) |
| 165 | 164 | expr | |- ( ( ph /\ 0 = A ) -> ( B =/= 0 -> -. ( -u ( C + 1 ) + C ) < 0 ) ) |
| 166 | 133 165 | pm2.65d | |- ( ( ph /\ 0 = A ) -> -. B =/= 0 ) |
| 167 | nne | |- ( -. B =/= 0 <-> B = 0 ) |
|
| 168 | 166 167 | sylib | |- ( ( ph /\ 0 = A ) -> B = 0 ) |
| 169 | 168 | sq0id | |- ( ( ph /\ 0 = A ) -> ( B ^ 2 ) = 0 ) |
| 170 | simpr | |- ( ( ph /\ 0 = A ) -> 0 = A ) |
|
| 171 | 170 | oveq1d | |- ( ( ph /\ 0 = A ) -> ( 0 x. C ) = ( A x. C ) ) |
| 172 | 3 | recnd | |- ( ph -> C e. CC ) |
| 173 | 172 | adantr | |- ( ( ph /\ 0 = A ) -> C e. CC ) |
| 174 | 173 | mul02d | |- ( ( ph /\ 0 = A ) -> ( 0 x. C ) = 0 ) |
| 175 | 171 174 | eqtr3d | |- ( ( ph /\ 0 = A ) -> ( A x. C ) = 0 ) |
| 176 | 175 | oveq2d | |- ( ( ph /\ 0 = A ) -> ( 4 x. ( A x. C ) ) = ( 4 x. 0 ) ) |
| 177 | 27 | mul01i | |- ( 4 x. 0 ) = 0 |
| 178 | 176 177 | eqtrdi | |- ( ( ph /\ 0 = A ) -> ( 4 x. ( A x. C ) ) = 0 ) |
| 179 | 169 178 | oveq12d | |- ( ( ph /\ 0 = A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) = ( 0 - 0 ) ) |
| 180 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 181 | 0le0 | |- 0 <_ 0 |
|
| 182 | 180 181 | eqbrtri | |- ( 0 - 0 ) <_ 0 |
| 183 | 179 182 | eqbrtrdi | |- ( ( ph /\ 0 = A ) -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| 184 | eqid | |- if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) = if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) |
|
| 185 | 1 2 3 4 184 | discr1 | |- ( ph -> 0 <_ A ) |
| 186 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 187 | 160 1 186 | sylancr | |- ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 188 | 185 187 | mpbid | |- ( ph -> ( 0 < A \/ 0 = A ) ) |
| 189 | 120 183 188 | mpjaodan | |- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |