This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discr.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| discr.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| discr.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| discr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) | ||
| discr1.5 | ⊢ 𝑋 = if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) | ||
| Assertion | discr1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discr.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | discr.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | discr.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | discr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) | |
| 5 | discr1.5 | ⊢ 𝑋 = if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑋 ↑ 2 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑋 ) ) | |
| 9 | 7 8 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ↔ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) |
| 12 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ ) |
| 15 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ∈ ℝ ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | ifcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 19 | 14 18 | readdcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
| 20 | peano2re | ⊢ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ) |
| 22 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 23 | 22 | renegcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 24 | 1 | lt0neg1d | ⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 25 | 24 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 26 | 25 | gt0ne0d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → - 𝐴 ≠ 0 ) |
| 27 | 21 23 26 | redivcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) |
| 28 | 1re | ⊢ 1 ∈ ℝ | |
| 29 | ifcl | ⊢ ( ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ∈ ℝ ) | |
| 30 | 27 28 29 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ∈ ℝ ) |
| 31 | 5 30 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝑋 ∈ ℝ ) |
| 32 | 11 13 31 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
| 33 | resqcl | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ↑ 2 ) ∈ ℝ ) | |
| 34 | 31 33 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
| 35 | 22 34 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · ( 𝑋 ↑ 2 ) ) ∈ ℝ ) |
| 36 | 14 31 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 · 𝑋 ) ∈ ℝ ) |
| 37 | 35 36 | readdcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ∈ ℝ ) |
| 38 | 37 15 | readdcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ∈ ℝ ) |
| 39 | 22 31 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · 𝑋 ) ∈ ℝ ) |
| 40 | 39 19 | readdcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 41 | 40 31 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ∈ ℝ ) |
| 42 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) |
| 43 | 18 31 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ∈ ℝ ) |
| 44 | max2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 45 | 16 15 44 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 46 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 47 | 16 15 46 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 48 | max1 | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) → 1 ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) | |
| 49 | 28 27 48 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
| 50 | 49 5 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ≤ 𝑋 ) |
| 51 | 18 31 47 50 | lemulge11d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ≤ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) |
| 52 | 15 18 43 45 51 | letrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ≤ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) |
| 53 | 15 43 37 52 | leadd2dd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
| 54 | 39 14 | readdcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + 𝐵 ) ∈ ℝ ) |
| 55 | 54 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + 𝐵 ) ∈ ℂ ) |
| 56 | 18 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
| 57 | 31 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝑋 ∈ ℂ ) |
| 58 | 55 56 57 | adddird | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) · 𝑋 ) = ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
| 59 | 39 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
| 60 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐵 ∈ ℂ ) |
| 61 | 59 60 56 | addassd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 62 | 61 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) · 𝑋 ) = ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ) |
| 63 | 22 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℂ ) |
| 64 | 63 57 57 | mulassd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) · 𝑋 ) = ( 𝐴 · ( 𝑋 · 𝑋 ) ) ) |
| 65 | sqval | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) | |
| 66 | 57 65 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
| 67 | 66 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · ( 𝑋 ↑ 2 ) ) = ( 𝐴 · ( 𝑋 · 𝑋 ) ) ) |
| 68 | 64 67 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) · 𝑋 ) = ( 𝐴 · ( 𝑋 ↑ 2 ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) · 𝑋 ) + ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
| 70 | 59 57 60 69 | joinlmuladdmuld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
| 72 | 58 62 71 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
| 73 | 53 72 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ≤ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ) |
| 74 | 23 31 | remulcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) ∈ ℝ ) |
| 75 | 19 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ) |
| 76 | max2 | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) | |
| 77 | 28 27 76 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
| 78 | 77 5 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ) |
| 79 | ledivmul | ⊢ ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) → ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ↔ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) ) | |
| 80 | 21 31 23 25 79 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ↔ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) ) |
| 81 | 78 80 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) |
| 82 | 19 21 74 75 81 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( - 𝐴 · 𝑋 ) ) |
| 83 | 63 57 | mulneg1d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) = - ( 𝐴 · 𝑋 ) ) |
| 84 | df-neg | ⊢ - ( 𝐴 · 𝑋 ) = ( 0 − ( 𝐴 · 𝑋 ) ) | |
| 85 | 83 84 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) = ( 0 − ( 𝐴 · 𝑋 ) ) ) |
| 86 | 82 85 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( 0 − ( 𝐴 · 𝑋 ) ) ) |
| 87 | 39 19 42 | ltaddsub2d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( 0 − ( 𝐴 · 𝑋 ) ) ) ) |
| 88 | 86 87 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ) |
| 89 | 28 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ∈ ℝ ) |
| 90 | 0lt1 | ⊢ 0 < 1 | |
| 91 | 90 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 1 ) |
| 92 | 42 89 31 91 50 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 𝑋 ) |
| 93 | ltmul1 | ⊢ ( ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) ) | |
| 94 | 40 42 31 92 93 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) ) |
| 95 | 88 94 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) |
| 96 | 57 | mul02d | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 0 · 𝑋 ) = 0 ) |
| 97 | 95 96 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < 0 ) |
| 98 | 38 41 42 73 97 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ) |
| 99 | ltnle | ⊢ ( ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ↔ ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) | |
| 100 | 38 16 99 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ↔ ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) |
| 101 | 98 100 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
| 102 | 32 101 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝐴 < 0 ) |
| 103 | lelttric | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ∨ 𝐴 < 0 ) ) | |
| 104 | 16 1 103 | sylancr | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ∨ 𝐴 < 0 ) ) |
| 105 | 104 | ord | ⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐴 → 𝐴 < 0 ) ) |
| 106 | 102 105 | mt3d | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |