This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discmp | |- ( A e. Fin <-> ~P A e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | |- ( A e. Fin -> ~P A e. Top ) |
|
| 2 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 3 | 2 | biimpi | |- ( A e. Fin -> ~P A e. Fin ) |
| 4 | 1 3 | elind | |- ( A e. Fin -> ~P A e. ( Top i^i Fin ) ) |
| 5 | fincmp | |- ( ~P A e. ( Top i^i Fin ) -> ~P A e. Comp ) |
|
| 6 | 4 5 | syl | |- ( A e. Fin -> ~P A e. Comp ) |
| 7 | simpr | |- ( ( ~P A e. Comp /\ x e. A ) -> x e. A ) |
|
| 8 | 7 | snssd | |- ( ( ~P A e. Comp /\ x e. A ) -> { x } C_ A ) |
| 9 | vsnex | |- { x } e. _V |
|
| 10 | 9 | elpw | |- ( { x } e. ~P A <-> { x } C_ A ) |
| 11 | 8 10 | sylibr | |- ( ( ~P A e. Comp /\ x e. A ) -> { x } e. ~P A ) |
| 12 | 11 | fmpttd | |- ( ~P A e. Comp -> ( x e. A |-> { x } ) : A --> ~P A ) |
| 13 | 12 | frnd | |- ( ~P A e. Comp -> ran ( x e. A |-> { x } ) C_ ~P A ) |
| 14 | eqid | |- ( x e. A |-> { x } ) = ( x e. A |-> { x } ) |
|
| 15 | 14 | rnmpt | |- ran ( x e. A |-> { x } ) = { y | E. x e. A y = { x } } |
| 16 | 15 | unieqi | |- U. ran ( x e. A |-> { x } ) = U. { y | E. x e. A y = { x } } |
| 17 | 9 | dfiun2 | |- U_ x e. A { x } = U. { y | E. x e. A y = { x } } |
| 18 | iunid | |- U_ x e. A { x } = A |
|
| 19 | 16 17 18 | 3eqtr2ri | |- A = U. ran ( x e. A |-> { x } ) |
| 20 | 19 | a1i | |- ( ~P A e. Comp -> A = U. ran ( x e. A |-> { x } ) ) |
| 21 | unipw | |- U. ~P A = A |
|
| 22 | 21 | eqcomi | |- A = U. ~P A |
| 23 | 22 | cmpcov | |- ( ( ~P A e. Comp /\ ran ( x e. A |-> { x } ) C_ ~P A /\ A = U. ran ( x e. A |-> { x } ) ) -> E. y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) A = U. y ) |
| 24 | 13 20 23 | mpd3an23 | |- ( ~P A e. Comp -> E. y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) A = U. y ) |
| 25 | elinel2 | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> y e. Fin ) |
|
| 26 | elinel1 | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> y e. ~P ran ( x e. A |-> { x } ) ) |
|
| 27 | 26 | elpwid | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> y C_ ran ( x e. A |-> { x } ) ) |
| 28 | snfi | |- { x } e. Fin |
|
| 29 | 28 | rgenw | |- A. x e. A { x } e. Fin |
| 30 | 14 | fmpt | |- ( A. x e. A { x } e. Fin <-> ( x e. A |-> { x } ) : A --> Fin ) |
| 31 | 29 30 | mpbi | |- ( x e. A |-> { x } ) : A --> Fin |
| 32 | frn | |- ( ( x e. A |-> { x } ) : A --> Fin -> ran ( x e. A |-> { x } ) C_ Fin ) |
|
| 33 | 31 32 | mp1i | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> ran ( x e. A |-> { x } ) C_ Fin ) |
| 34 | 27 33 | sstrd | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> y C_ Fin ) |
| 35 | unifi | |- ( ( y e. Fin /\ y C_ Fin ) -> U. y e. Fin ) |
|
| 36 | 25 34 35 | syl2anc | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> U. y e. Fin ) |
| 37 | eleq1 | |- ( A = U. y -> ( A e. Fin <-> U. y e. Fin ) ) |
|
| 38 | 36 37 | syl5ibrcom | |- ( y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) -> ( A = U. y -> A e. Fin ) ) |
| 39 | 38 | rexlimiv | |- ( E. y e. ( ~P ran ( x e. A |-> { x } ) i^i Fin ) A = U. y -> A e. Fin ) |
| 40 | 24 39 | syl | |- ( ~P A e. Comp -> A e. Fin ) |
| 41 | 6 40 | impbii | |- ( A e. Fin <-> ~P A e. Comp ) |