This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| dipfval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| dipfval.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | dipfval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | dipfval.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 6 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 8 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) | |
| 9 | 8 4 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = 𝑁 ) |
| 10 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = 𝐺 ) |
| 12 | eqidd | ⊢ ( 𝑢 = 𝑈 → 𝑥 = 𝑥 ) | |
| 13 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = ( ·𝑠OLD ‘ 𝑈 ) ) | |
| 14 | 13 3 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = 𝑆 ) |
| 15 | 14 | oveqd | ⊢ ( 𝑢 = 𝑈 → ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) = ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) |
| 16 | 11 12 15 | oveq123d | ⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) = ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) |
| 17 | 9 16 | fveq12d | ⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝑢 = 𝑈 → ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) = ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 20 | 19 | sumeq2sdv | ⊢ ( 𝑢 = 𝑈 → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝑢 = 𝑈 → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) |
| 22 | 7 7 21 | mpoeq123dv | ⊢ ( 𝑢 = 𝑈 → ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
| 23 | df-dip | ⊢ ·𝑖OLD = ( 𝑢 ∈ NrmCVec ↦ ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) | |
| 24 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 25 | 24 24 | mpoex | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ∈ V |
| 26 | 22 23 25 | fvmpt | ⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑖OLD ‘ 𝑈 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
| 27 | 5 26 | eqtrid | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |