This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difgtsumgt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | nn0cn | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 7 | 6 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 8 | 7 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) ↔ 𝐶 < ( 𝐴 + - 𝐵 ) ) ) |
| 9 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 11 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 12 | 11 | renegcld | ⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ∈ ℝ ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ∈ ℝ ) |
| 14 | 10 13 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ∈ ℝ ) |
| 15 | 11 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 16 | 10 15 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 17 | 9 14 16 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ∧ ( 𝐴 + - 𝐵 ) ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ) ) |
| 18 | nn0negleid | ⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ≤ 𝐵 ) | |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ≤ 𝐵 ) |
| 20 | 13 15 10 19 | leadd2dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ≤ ( 𝐴 + 𝐵 ) ) |
| 21 | 17 20 | lelttrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 + - 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |
| 22 | 8 21 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |