This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difelfznle | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) | |
| 2 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) | |
| 3 | 2 | nn0zd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 6 | elfzelz | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 7 | zsubcl | ⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℤ ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℤ ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℤ ) |
| 10 | 6 | zred | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℝ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 12 | elfzel2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 13 | 12 | zred | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 15 | nn0readdcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) | |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
| 17 | 1 16 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
| 19 | elfzle2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ≤ 𝑁 ) | |
| 20 | elfzle1 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑀 ) | |
| 21 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 22 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 23 | 21 22 | anim12ci | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 25 | 1 24 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 26 | addge02 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 ≤ 𝑀 ↔ 𝑁 ≤ ( 𝑀 + 𝑁 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 0 ≤ 𝑀 ↔ 𝑁 ≤ ( 𝑀 + 𝑁 ) ) ) |
| 28 | 20 27 | mpbid | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ≤ ( 𝑀 + 𝑁 ) ) |
| 29 | 19 28 | anim12i | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝐾 ≤ 𝑁 ∧ 𝑁 ≤ ( 𝑀 + 𝑁 ) ) ) |
| 30 | letr | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑀 + 𝑁 ) ∈ ℝ ) → ( ( 𝐾 ≤ 𝑁 ∧ 𝑁 ≤ ( 𝑀 + 𝑁 ) ) → 𝐾 ≤ ( 𝑀 + 𝑁 ) ) ) | |
| 31 | 30 | imp | ⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑀 + 𝑁 ) ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑁 ∧ 𝑁 ≤ ( 𝑀 + 𝑁 ) ) ) → 𝐾 ≤ ( 𝑀 + 𝑁 ) ) |
| 32 | 11 14 18 29 31 | syl31anc | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝐾 ≤ ( 𝑀 + 𝑁 ) ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → 𝐾 ≤ ( 𝑀 + 𝑁 ) ) |
| 34 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 35 | 21 22 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 36 | 35 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 37 | 1 36 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 38 | readdcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
| 40 | 34 39 | anim12ci | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) |
| 41 | 6 40 | sylan | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) |
| 42 | 41 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) |
| 43 | subge0 | ⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ ( ( 𝑀 + 𝑁 ) − 𝐾 ) ↔ 𝐾 ≤ ( 𝑀 + 𝑁 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( 0 ≤ ( ( 𝑀 + 𝑁 ) − 𝐾 ) ↔ 𝐾 ≤ ( 𝑀 + 𝑁 ) ) ) |
| 45 | 33 44 | mpbird | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → 0 ≤ ( ( 𝑀 + 𝑁 ) − 𝐾 ) ) |
| 46 | elnn0z | ⊢ ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℕ0 ↔ ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑀 + 𝑁 ) − 𝐾 ) ) ) | |
| 47 | 9 45 46 | sylanbrc | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℕ0 ) |
| 48 | elfz3nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → 𝑁 ∈ ℕ0 ) |
| 50 | elfzelz | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 51 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 52 | ltnle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀 ) ) | |
| 53 | 52 | ancoms | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀 ) ) |
| 54 | ltle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 < 𝐾 → 𝑀 ≤ 𝐾 ) ) | |
| 55 | 54 | ancoms | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑀 < 𝐾 → 𝑀 ≤ 𝐾 ) ) |
| 56 | 53 55 | sylbird | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ¬ 𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾 ) ) |
| 57 | 34 51 56 | syl2an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ¬ 𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾 ) ) |
| 58 | 6 50 57 | syl2an | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ¬ 𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾 ) ) |
| 59 | 58 | 3impia | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → 𝑀 ≤ 𝐾 ) |
| 60 | 50 | zred | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℝ ) |
| 61 | 60 | adantl | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 62 | 61 11 14 | leadd1d | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 ≤ 𝐾 ↔ ( 𝑀 + 𝑁 ) ≤ ( 𝐾 + 𝑁 ) ) ) |
| 63 | 62 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( 𝑀 ≤ 𝐾 ↔ ( 𝑀 + 𝑁 ) ≤ ( 𝐾 + 𝑁 ) ) ) |
| 64 | 59 63 | mpbid | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( 𝑀 + 𝑁 ) ≤ ( 𝐾 + 𝑁 ) ) |
| 65 | 18 11 14 | lesubadd2d | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ≤ 𝑁 ↔ ( 𝑀 + 𝑁 ) ≤ ( 𝐾 + 𝑁 ) ) ) |
| 66 | 65 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ≤ 𝑁 ↔ ( 𝑀 + 𝑁 ) ≤ ( 𝐾 + 𝑁 ) ) ) |
| 67 | 64 66 | mpbird | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ≤ 𝑁 ) |
| 68 | elfz2nn0 | ⊢ ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( ( 𝑀 + 𝑁 ) − 𝐾 ) ≤ 𝑁 ) ) | |
| 69 | 47 49 67 68 | syl3anbrc | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ ¬ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 + 𝑁 ) − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |