This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the set of nonnegative integers as the disjoint (see nn0disj ) union of the first N + 1 values and the rest. (Contributed by AV, 8-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0split | ⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ℤ≥ ‘ 0 ) ) |
| 3 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 4 | 3 1 | eleqtrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 5 | uzsplit | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 7 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 8 | pncan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 11 | 10 | uneq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 12 | 2 6 11 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |