This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difelfznle | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) - K ) e. ( 0 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | |- ( M e. ( 0 ... N ) <-> ( M e. NN0 /\ N e. NN0 /\ M <_ N ) ) |
|
| 2 | nn0addcl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. ZZ ) |
| 4 | 3 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( M + N ) e. ZZ ) |
| 5 | 1 4 | sylbi | |- ( M e. ( 0 ... N ) -> ( M + N ) e. ZZ ) |
| 6 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 7 | zsubcl | |- ( ( ( M + N ) e. ZZ /\ K e. ZZ ) -> ( ( M + N ) - K ) e. ZZ ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( ( M + N ) - K ) e. ZZ ) |
| 9 | 8 | 3adant3 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) - K ) e. ZZ ) |
| 10 | 6 | zred | |- ( K e. ( 0 ... N ) -> K e. RR ) |
| 11 | 10 | adantr | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> K e. RR ) |
| 12 | elfzel2 | |- ( K e. ( 0 ... N ) -> N e. ZZ ) |
|
| 13 | 12 | zred | |- ( K e. ( 0 ... N ) -> N e. RR ) |
| 14 | 13 | adantr | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> N e. RR ) |
| 15 | nn0readdcl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. RR ) |
|
| 16 | 15 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( M + N ) e. RR ) |
| 17 | 1 16 | sylbi | |- ( M e. ( 0 ... N ) -> ( M + N ) e. RR ) |
| 18 | 17 | adantl | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( M + N ) e. RR ) |
| 19 | elfzle2 | |- ( K e. ( 0 ... N ) -> K <_ N ) |
|
| 20 | elfzle1 | |- ( M e. ( 0 ... N ) -> 0 <_ M ) |
|
| 21 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 22 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 23 | 21 22 | anim12ci | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( N e. RR /\ M e. RR ) ) |
| 24 | 23 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( N e. RR /\ M e. RR ) ) |
| 25 | 1 24 | sylbi | |- ( M e. ( 0 ... N ) -> ( N e. RR /\ M e. RR ) ) |
| 26 | addge02 | |- ( ( N e. RR /\ M e. RR ) -> ( 0 <_ M <-> N <_ ( M + N ) ) ) |
|
| 27 | 25 26 | syl | |- ( M e. ( 0 ... N ) -> ( 0 <_ M <-> N <_ ( M + N ) ) ) |
| 28 | 20 27 | mpbid | |- ( M e. ( 0 ... N ) -> N <_ ( M + N ) ) |
| 29 | 19 28 | anim12i | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( K <_ N /\ N <_ ( M + N ) ) ) |
| 30 | letr | |- ( ( K e. RR /\ N e. RR /\ ( M + N ) e. RR ) -> ( ( K <_ N /\ N <_ ( M + N ) ) -> K <_ ( M + N ) ) ) |
|
| 31 | 30 | imp | |- ( ( ( K e. RR /\ N e. RR /\ ( M + N ) e. RR ) /\ ( K <_ N /\ N <_ ( M + N ) ) ) -> K <_ ( M + N ) ) |
| 32 | 11 14 18 29 31 | syl31anc | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> K <_ ( M + N ) ) |
| 33 | 32 | 3adant3 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> K <_ ( M + N ) ) |
| 34 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 35 | 21 22 | anim12i | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M e. RR /\ N e. RR ) ) |
| 36 | 35 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( M e. RR /\ N e. RR ) ) |
| 37 | 1 36 | sylbi | |- ( M e. ( 0 ... N ) -> ( M e. RR /\ N e. RR ) ) |
| 38 | readdcl | |- ( ( M e. RR /\ N e. RR ) -> ( M + N ) e. RR ) |
|
| 39 | 37 38 | syl | |- ( M e. ( 0 ... N ) -> ( M + N ) e. RR ) |
| 40 | 34 39 | anim12ci | |- ( ( K e. ZZ /\ M e. ( 0 ... N ) ) -> ( ( M + N ) e. RR /\ K e. RR ) ) |
| 41 | 6 40 | sylan | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( ( M + N ) e. RR /\ K e. RR ) ) |
| 42 | 41 | 3adant3 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) e. RR /\ K e. RR ) ) |
| 43 | subge0 | |- ( ( ( M + N ) e. RR /\ K e. RR ) -> ( 0 <_ ( ( M + N ) - K ) <-> K <_ ( M + N ) ) ) |
|
| 44 | 42 43 | syl | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( 0 <_ ( ( M + N ) - K ) <-> K <_ ( M + N ) ) ) |
| 45 | 33 44 | mpbird | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> 0 <_ ( ( M + N ) - K ) ) |
| 46 | elnn0z | |- ( ( ( M + N ) - K ) e. NN0 <-> ( ( ( M + N ) - K ) e. ZZ /\ 0 <_ ( ( M + N ) - K ) ) ) |
|
| 47 | 9 45 46 | sylanbrc | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) - K ) e. NN0 ) |
| 48 | elfz3nn0 | |- ( K e. ( 0 ... N ) -> N e. NN0 ) |
|
| 49 | 48 | 3ad2ant1 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> N e. NN0 ) |
| 50 | elfzelz | |- ( M e. ( 0 ... N ) -> M e. ZZ ) |
|
| 51 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 52 | ltnle | |- ( ( M e. RR /\ K e. RR ) -> ( M < K <-> -. K <_ M ) ) |
|
| 53 | 52 | ancoms | |- ( ( K e. RR /\ M e. RR ) -> ( M < K <-> -. K <_ M ) ) |
| 54 | ltle | |- ( ( M e. RR /\ K e. RR ) -> ( M < K -> M <_ K ) ) |
|
| 55 | 54 | ancoms | |- ( ( K e. RR /\ M e. RR ) -> ( M < K -> M <_ K ) ) |
| 56 | 53 55 | sylbird | |- ( ( K e. RR /\ M e. RR ) -> ( -. K <_ M -> M <_ K ) ) |
| 57 | 34 51 56 | syl2an | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( -. K <_ M -> M <_ K ) ) |
| 58 | 6 50 57 | syl2an | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( -. K <_ M -> M <_ K ) ) |
| 59 | 58 | 3impia | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> M <_ K ) |
| 60 | 50 | zred | |- ( M e. ( 0 ... N ) -> M e. RR ) |
| 61 | 60 | adantl | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> M e. RR ) |
| 62 | 61 11 14 | leadd1d | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( M <_ K <-> ( M + N ) <_ ( K + N ) ) ) |
| 63 | 62 | 3adant3 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( M <_ K <-> ( M + N ) <_ ( K + N ) ) ) |
| 64 | 59 63 | mpbid | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( M + N ) <_ ( K + N ) ) |
| 65 | 18 11 14 | lesubadd2d | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> ( ( ( M + N ) - K ) <_ N <-> ( M + N ) <_ ( K + N ) ) ) |
| 66 | 65 | 3adant3 | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( ( M + N ) - K ) <_ N <-> ( M + N ) <_ ( K + N ) ) ) |
| 67 | 64 66 | mpbird | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) - K ) <_ N ) |
| 68 | elfz2nn0 | |- ( ( ( M + N ) - K ) e. ( 0 ... N ) <-> ( ( ( M + N ) - K ) e. NN0 /\ N e. NN0 /\ ( ( M + N ) - K ) <_ N ) ) |
|
| 69 | 47 49 67 68 | syl3anbrc | |- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) /\ -. K <_ M ) -> ( ( M + N ) - K ) e. ( 0 ... N ) ) |