This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: To any functor from a terminal category can an object in the target base be assigned. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| termcfuncval.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) | ||
| termcfuncval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| termcfuncval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcfuncval.x | ⊢ 𝑋 = ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) | ||
| diag1f1olem.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | ||
| Assertion | diag1f1olem | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | termcfuncval.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) | |
| 4 | termcfuncval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | termcfuncval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | termcfuncval.x | ⊢ 𝑋 = ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) | |
| 7 | diag1f1olem.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 8 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 10 | 1 2 3 4 5 6 8 9 | termcfuncval | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } 〉 ) ) |
| 11 | 10 | simpld | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 12 | 2 4 5 | termcbas2 | ⊢ ( 𝜑 → 𝐵 = { 𝑌 } ) |
| 13 | 12 | xpeq1d | ⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( { 𝑌 } × { 𝑋 } ) ) |
| 14 | xpsng | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( { 𝑌 } × { 𝑋 } ) = { 〈 𝑌 , 𝑋 〉 } ) | |
| 15 | 5 11 14 | syl2anc | ⊢ ( 𝜑 → ( { 𝑌 } × { 𝑋 } ) = { 〈 𝑌 , 𝑋 〉 } ) |
| 16 | 13 15 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = { 〈 𝑌 , 𝑋 〉 } ) |
| 17 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐵 = { 𝑌 } ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐷 ∈ TermCat ) |
| 19 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 21 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 22 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 23 | 18 4 19 20 21 9 22 | termchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) = { ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) } ) |
| 24 | 23 | xpeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) = ( { ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) } × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) |
| 25 | fvex | ⊢ ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) ∈ V | |
| 26 | fvex | ⊢ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ V | |
| 27 | 25 26 | xpsn | ⊢ ( { ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) } × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) = { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } |
| 28 | 24 27 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) = { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) |
| 29 | 12 17 28 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) = ( 𝑦 ∈ { 𝑌 } , 𝑧 ∈ { 𝑌 } ↦ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) ) |
| 30 | snex | ⊢ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ∈ V | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ∈ V ) |
| 32 | eqid | ⊢ ( 𝑦 ∈ { 𝑌 } , 𝑧 ∈ { 𝑌 } ↦ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) = ( 𝑦 ∈ { 𝑌 } , 𝑧 ∈ { 𝑌 } ↦ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) | |
| 33 | eqidd | ⊢ ( 𝑦 = 𝑌 → { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } = { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) | |
| 34 | eqidd | ⊢ ( 𝑧 = 𝑌 → { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } = { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) | |
| 35 | 32 33 34 | mposn | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ∈ V ) → ( 𝑦 ∈ { 𝑌 } , 𝑧 ∈ { 𝑌 } ↦ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } ) |
| 36 | 5 5 31 35 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑌 } , 𝑧 ∈ { 𝑌 } ↦ { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } ) = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } ) |
| 37 | 29 36 | eqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } ) |
| 38 | 16 37 | opeq12d | ⊢ ( 𝜑 → 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 39 | 3 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 40 | 39 | funcrcl3 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 41 | 2 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 42 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 43 | 7 40 41 1 11 42 4 21 8 | diag1a | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 44 | 10 | simprd | ⊢ ( 𝜑 → 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 45 | 38 43 44 | 3eqtr4rd | ⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 46 | 11 45 | jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |