This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | termcbas2 | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | 1 2 | termcbas | ⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝐵 = { 𝑥 } ) | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝑋 ∈ 𝐵 ) |
| 7 | 6 5 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝑋 ∈ { 𝑥 } ) |
| 8 | elsni | ⊢ ( 𝑋 ∈ { 𝑥 } → 𝑋 = 𝑥 ) | |
| 9 | 8 | sneqd | ⊢ ( 𝑋 ∈ { 𝑥 } → { 𝑋 } = { 𝑥 } ) |
| 10 | 7 9 | syl | ⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → { 𝑋 } = { 𝑥 } ) |
| 11 | 5 10 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝐵 = { 𝑋 } ) |
| 12 | 4 11 | exlimddv | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |