This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mposn.f | ⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 } , 𝑦 ∈ { 𝐵 } ↦ 𝐶 ) | |
| mposn.a | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | ||
| mposn.b | ⊢ ( 𝑦 = 𝐵 → 𝐷 = 𝐸 ) | ||
| Assertion | mposn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐹 = { 〈 〈 𝐴 , 𝐵 〉 , 𝐸 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mposn.f | ⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 } , 𝑦 ∈ { 𝐵 } ↦ 𝐶 ) | |
| 2 | mposn.a | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| 3 | mposn.b | ⊢ ( 𝑦 = 𝐵 → 𝐷 = 𝐸 ) | |
| 4 | xpsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) |
| 6 | 5 | mpteq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑝 ∈ { 〈 𝐴 , 𝐵 〉 } ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 7 | mpompts | ⊢ ( 𝑥 ∈ { 𝐴 } , 𝑦 ∈ { 𝐵 } ↦ 𝐶 ) = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) | |
| 8 | 1 7 | eqtri | ⊢ 𝐹 = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐹 = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 10 | op2ndg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 11 | fveq2 | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 12 | 11 | eqcomd | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = ( 2nd ‘ 𝑝 ) ) |
| 13 | 12 | eqeq1d | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ↔ ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 14 | 10 13 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( 2nd ‘ 𝑝 ) = 𝐵 ) |
| 17 | op1stg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 18 | fveq2 | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 19 | 18 | eqcomd | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = ( 1st ‘ 𝑝 ) ) |
| 20 | 19 | eqeq1d | ⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ↔ ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 21 | 17 20 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( 1st ‘ 𝑝 ) = 𝐴 ) |
| 24 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐴 ∈ 𝑉 ) | |
| 25 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) | |
| 26 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐷 ) |
| 27 | 26 3 | sylan9eq | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐸 ) |
| 28 | 25 27 | csbied | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 29 | 24 28 | csbied | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 31 | csbeq1 | ⊢ ( ( 1st ‘ 𝑝 ) = 𝐴 → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) | |
| 32 | 31 | eqeq1d | ⊢ ( ( 1st ‘ 𝑝 ) = 𝐴 → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 34 | csbeq1 | ⊢ ( ( 2nd ‘ 𝑝 ) = 𝐵 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) | |
| 35 | 34 | adantr | ⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 36 | 35 | csbeq2dv | ⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 37 | 36 | eqeq1d | ⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 38 | 33 37 | bitrd | ⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 39 | 30 38 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 40 | 16 23 39 | mp2and | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 41 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 42 | 41 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 〈 𝐴 , 𝐵 〉 ∈ V ) |
| 43 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐸 ∈ 𝑈 ) | |
| 44 | 40 42 43 | fmptsnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → { 〈 〈 𝐴 , 𝐵 〉 , 𝐸 〉 } = ( 𝑝 ∈ { 〈 𝐴 , 𝐵 〉 } ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 45 | 6 9 44 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐹 = { 〈 〈 𝐴 , 𝐵 〉 , 𝐸 〉 } ) |